# **GIANO** cookbook for proposers

prepared by L. Origlia & E. Oliva

## September 2014

## About this document

This document is intended as a quick guide for GIANO proposal preparation in response to the 2015A Call for proposals issued by the TNG, where GIANO is offered for the first time to the users for regular observations.

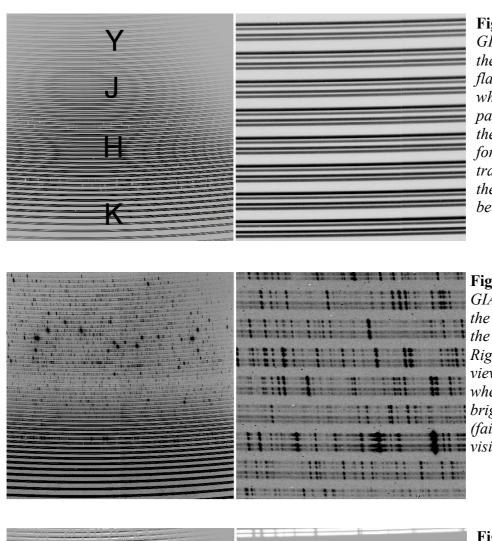
The document contains a brief description of the instrument characteristics and the echellogram format, first estimates of performances and recommended integration times as inferred during the Commissioning and Science Verification runs performed in 2013 and 2014.

## **1.0 Introduction**

GIANO is the near IR high resolution spectrograph mounted at the Nasmith A focus of the TNG. The instrument provides cross-dispersed echelle spectroscopy at a resolution of 50,000 over the 0.95 - 2.45 micron spectral range in a single exposure. It is fiber-fed with two fibers of 1 arcsec angular diameter at a fixed angular distance of 3 arcsec on sky.

GIANO has one observing mode at  $R\sim50,000$  and it can acquire spectra either of astrophysical objects and sky simultaneously, or of calibration lamps (halogen for flat-field and U-Ne for wavelength calibration) and dark frames. The main parameters of the GIANO detector and spectral characteristics are summarized in Table 1.

More information and detailed documentation on the instrument can be found in the GIANO webpage http://www.bo.astro.it/giano/GIANO/Documents.html.


| Detector            | HAWAII-2 2048x2048                                                           |
|---------------------|------------------------------------------------------------------------------|
| Pixel size          | 18 microns, 0.25 arcsec on sky                                               |
| Gain                | 2.2 e-/ADU                                                                   |
| Readout Noise       | 5 e-                                                                         |
| Dark Current        | 0.05 e-/s/pixel                                                              |
| Wavelength Coverage | 0.95 - 2.45 microns<br>(complete coverage up to 1.72 microns, see Sect. 2.0) |
| Spectral Resolution | 50,000                                                                       |
| Fiber size          | 85 microns, 1.0 arcsec on sky                                                |
| Slicer              | 2x                                                                           |

**Table 1:** Parameters of the GIANO detector and spectral characteristics.

## 2.0 The GIANO echellograms

The GIANO echellogram (see Figures 1-3) has a fixed format and includes the orders from 32 to 80, covering the 0.95-2.45 micron wavelength range.

It has a full spectral coverage up order 45, while at lower orders the spectral coverage is progressively reduced down to 75% at order 32 (see Table 2). Due to the image slicer, each 2D frame contains four tracks per order (two per fiber).



## Figure 1.

GIANO 2D-spectrum of the halogen lamp used as flat-field. Left panel: the whole echellogram. Right panel: a zoomed view of the echellogram, where for each order the four tracks corresponding to the two sliced fibers are better visible.

### Figure 2.

GIANO 2D-spectrum of the U-Ne lamp. Left panel: the whole echellogram. Right panel: a zoomed view of the echellogram, where some Ne (the brightest) and many (fainter) U lines are visible.

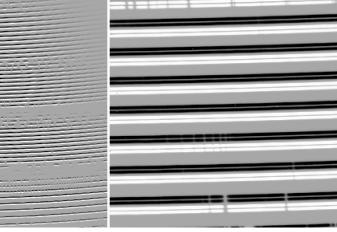



Figure 3. GIANO nodded (A-B) 2D-spectrum of a bright star. Left panel: the whole echellogram. Right panel: a zoomed view of the echellogram, where for each four order the tracks corresponding to the two sliced A (positive) and B (negative) fibers are better visible.

| # order           | $\lambda_0$ | $\lambda_{min}$ | $\lambda_{max}$ | Δλ    |
|-------------------|-------------|-----------------|-----------------|-------|
| 32                | 23974       | 23699           | 24224           | 0.256 |
| 33                | 23247       | 22979           | 23490           | 0.249 |
| 34                | 22562       | 22302           | 22799           | 0.242 |
| 35                | 21917       | 21664           | 22146           | 0.235 |
| 36                | 21308       | 21062           | 21531           | 0.229 |
| 37                | 20731       | 20492           | 20948           | 0.222 |
| 38                | 20185       | 19952           | 20396           | 0.217 |
| 39                | 19667       | 19440           | 19872           | 0.211 |
| 40                | 19174       | 18953           | 19375           | 0.206 |
| 41                | 18706       | 18490           | 18902           | 0.201 |
| 42                | 18260       | 18049           | 18451           | 0.196 |
| 43                | 17835       | 17629           | 18021           | 0.191 |
| 44                | 17429       | 17228           | 17611           | 0.187 |
| 45                | 17041       | 16844           | 17219           | 0.183 |
| 46                | 16670       | 16478           | 16844           | 0.179 |
| 47                | 16315       | 16126           | 16486           | 0.175 |
| 48                | 15974       | 15790           | 16142           | 0.172 |
| 49                | 15648       | 15467           | 15812           | 0.168 |
| 50                | 15334       | 15157           | 15495           | 0.165 |
| 51                | 15033       | 14860           | 15191           | 0.161 |
| 52                | 14744       | 14573           | 14898           | 0.158 |
| 53                | 14465       | 14298           | 14616           | 0.155 |
| <u> </u>          | 14197       | 14033           | 14345           | 0.155 |
| 55                | 13938       | 13777           | 14084           | 0.152 |
| <u>56</u>         | 13689       | 13531           | 13832           | 0.130 |
| 57                | 13448       | 13293           | 13589           | 0.147 |
| 58                | 13216       | 13063           | 13354           | 0.144 |
| <u> </u>          | 12991       | 12841           | 13127           | 0.142 |
| <u> </u>          | 12774       | 12627           | 12908           | 0.140 |
| 61                | 12564       | 12027           | 12696           | 0.135 |
| 62                | 12361       | 12219           | 12090           | 0.133 |
| 63                | 12165       | 12024           | 12292           | 0.131 |
| 64                | 11974       | 11836           | 12100           | 0.129 |
| 65                | 11790       | 11654           | 11913           | 0.127 |
| 66                | 11611       | 11477           | 11732           | 0.127 |
| 67                | 11437       | 11305           | 11752           | 0.123 |
| 68                | 11268       | 11138           | 11387           | 0.123 |
| <u>69</u>         | 11105       | 10977           | 11221           | 0.119 |
| 70                | 10946       | 10819           | 11060           | 0.119 |
| 71                | 10791       | 10667           | 10904           | 0.118 |
| 71 72             | 10641       | 10518           | 10753           | 0.110 |
| 73                | 10495       | 10374           | 10755           | 0.114 |
| 74                | 10495       | 10233           | 10003           | 0.113 |
| 75                | 10214       | 10096           | 10401           | 0.111 |
| 76                | 10214       | 9963            | 10185           | 0.108 |
| 77                | 9948        | 9833            | 10185           | 0.108 |
| 78                | 9821        | 9707            | 9923            | 0.107 |
| <u>78</u><br>79   | 9696        | 9584            | 9797            | 0.100 |
| <u>- 19</u><br>80 | 9574        | 9384            | 9675            | 0.104 |
| 00                | 75/4        | 7404            | 90/3            | 0.105 |

**Table 2:** GIANO echellogram parameters: wavelengths are in Angstroms and in vacuum.

## 3.0 GIANO Performances

First estimates of the overall GIANO performances (spectral accuracy and sensitivities), as measured during the Commissioning and Science Verification runs of 2013 and 2014, are summarized in Table 3.

| Wavelength calibration <sup>1</sup> accuracy with U-Ne lamp              | 300 m/s (r.m.s)         |
|--------------------------------------------------------------------------|-------------------------|
| Radial velocity <sup>2</sup> accuracy with telluric lines                | 7 m/s (r.m.s)           |
| Maximum S/N <sup>3</sup> on flatfield (about photon-noise limited)       | ~1000 (Y,J), ~300 (H,K) |
| Maximum S/N <sup>3</sup> on stars (limited by fiber modal noise)         | ~70 (Y,J), ~50 (H,K)    |
| Zero point (J-band, Vega mag for 1 ADU/s)                                | 10.1                    |
| Zero point (H-band, Vega mag for 1 ADU/s)                                | 10.3                    |
| Zero point (K-band, Vega mag for 1 ADU/s)                                | 10.2                    |
| Limiting magnitude (z-band, Vega mag) of the guiding camera <sup>4</sup> | 15                      |

| Table 3: GIANO | spectral | accuracy | and | sensitivities. |
|----------------|----------|----------|-----|----------------|
|----------------|----------|----------|-----|----------------|

#### Notes:

<sup>1</sup> The optimal **wavelength solution** uses ~500 U-Ne lines distributed over all orders and provides a wavelength calibration accuracy of ~300 m/s equivalent to ~1/10 of a pixel (r.m.s). This solution has been also cross-checked over about 300 OH and O<sub>2</sub> atmospheric emission lines as well as some telluric features in the observed spectra, for which accurate laboratory and/or theoretical wavelengths are available.

<sup>2</sup> Radial velocities are obtained by cross correlating observed and reference lines on single orders and deriving corresponding CCFs; the latter are then weighted-summed. Internal errors amount to 3-5 m/s and are ultimately limited by the uncertainty in the stellar radial velocity and by the radial velocity signal of the CCF, while the rms scatter from different exposures of the same star amounts to 7 m/s. These errors do not depend on the spectral type of the star.

<sup>3</sup> Fibers suffers of **modal noise**, whose amplitude increases with increasing wavelength. GIANO uses a mechanical agitator to decrease the effect of fiber modal noise on the spectra. This mechanism works quite well for diffuse sources like the calibration lamps: the residual noise in the K-band drops from ~2% (without agitator) to ~0.3% (with agitator). However, when observing scientific targets (e.g. stars), the modal noise is amplified by effects related to the non-uniform illumination of the fiber, which also depends on the seeing conditions and on the tracking/guiding performances of the telescope. The maximum signal-to-noise achievable in the K-band is about 20 (without fiber-agitator) and 50 (with fiber-agitator). The maximum signal-to-noise is slightly higher at shorter wavelengths.

<sup>4</sup>The guiding is performed on the object itself by using a CCD camera mounted inside the GIANO interface box, which receives red light (850-950 nm, about the z band) from a dichroic filter. Hence, for a proper guiding, targets must be brighter than  $z\sim15$  mag.

# 4.0 Observations and recommended exposure times

Observations of science targets are performed by nodding-on-fiber (see Figure 3), i.e. target and sky are taken in pairs and alternatively acquired on fiber A and B (AB cycles), respectively, for an optimal subtraction of the detector noise and background.

From each pair of exposure an (A-B) 2D-spectrum will be computed (see Figure 3). The positive (A) and negative (B) spectra of the target star will be then extracted and summed together to get a final, 1D wavelength-calibrated spectrum with the best possible signal-to-noise ratio.

Calibrations (dark, flat and U-Ne frames) can be taken in day-time.

Recommended on-source integration times to reach  $S/N\sim50$  per spectral pixel (about modal-noise limited) for stars of different magnitudes are listed in Table 4, and overheads in Table 5.

|                        | 0                                                              |
|------------------------|----------------------------------------------------------------|
| Target Vega magnitudes | On source integration times (seeing <1 arcsec)                 |
| JHK < 3                | 200  sec = 1 AB cycle with 100sec on A and 100sec on B         |
| 3 <= JHK < 6           | 600  sec = 1 AB cycle with 300sec on A and 300sec on B         |
| 6 =< JHK < 7           | 1200  sec = 2AB cycles with 300sec on A and 300sec on B        |
| 7 =< JHK < 8           | 1800  sec = 3AB cycles with 300sec on A and 300sec on B        |
| 8 =< JHK < 9           | 2400  sec = 4AB cycles with 300sec on A and 300sec on B        |
| 9 =< JHK < 10          | 3600  sec = 6 AB cycles with $300 sec$ on A and $300 sec$ on B |
| NT /                   |                                                                |

**Table 4:** Recommended on-source integration times.

#### Notes:

**1)** Allowed detector integration times (DIT) on individual fibers are as follows: 10, 30, 60, 100, 200, 300 sec. Recommended DITs for most applications are 100s (JHK<3) and 300s (JHK>3).

2) For sources with JHK>10 Vega mag, the achievable S/N strongly depends on the seeing and sky transparency. Recommended exposure times are >1.5hr, i.e. >9AB cycles with 300sec on A and 300sec on B.

3) In case of bad seeing (>1.0 arcsec) spectra of stars with JHK < 9 can still be acquired by increasing the number of AB cycles.

4) When sources have significantly different J, H and K magnitudes, one can use as reference the faintest or the most scientifically interesting one.

### Table 5: Overheads.

| Overheads                             | Time               |
|---------------------------------------|--------------------|
| Telescope pointing and centering      | 5-10 min           |
| Detector readout and reset correction | 1min per AB cycle  |
| Telescope nodding and other settings  | 1 min per AB cycle |