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Abstract

Radial velocity (RV) searches for Earth-mass exoplanets in the habitable zone around Sun-like stars are limited by
the effects of stellar variability on the host star. In particular, suppression of convective blueshift and brightness
inhomogeneities due to photospheric faculae/plage and starspots are the dominant contribution to the variability of
such stellar RVs. Gaussian process (GP) regression is a powerful tool for statistically modeling these quasi-periodic
variations. We investigate the limits of this technique using 800 days of RVs from the solar telescope on the High
Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) spectrograph. These data
provide a well-sampled time series of stellar RV variations. Into this data set we inject Keplerian signals with
periods between 100 and 500 days and amplitudes between 0.6 and 2.4 ms~ . We use GP regression to fit the
resulting RVs and determine the statistical significance of recovered periods and amplitudes. We then generate
synthetic RVs with the same covariance properties as the solar data to determine a lower bound on the
observational baseline necessary to detect low-mass planets in Venus-like orbits around a Sun-like star. Our
simulations show that discovering planets with a larger mass (~0.5ms ') using current-generation spectrographs
and GP regression will require more than 12 yr of densely sampled RV observations. Furthermore, even with a
perfect model of stellar variability, discovering a true exo-Venus (~0.1 ms™ ") with current instruments would take
over 15 yr. Therefore, next-generation spectrographs and better models of stellar variability are required for
detection of such planets.

Unified Astronomy Thesaurus concepts: Gaussian Processes regression (1930); Radial velocity (1332); Exoplanets
(498); Solar activity (1475)

1. Introduction

State-of-the-art radial velocity (RV) searches for low-mass,
long-period exoplanets are limited by signals produced by
stellar magnetic variability. An Earth-like planet in orbit around
a Sun-like star in its habitable zone induces a reflex RV signal
on the order of 0.1 ms~'. However, the presence of acoustic
oscillations, magnetoconvection, large-scale magnetic struc-
tures, and other stellar processes induce RV perturbations that

2! NASA Sagan Fellow.
22 CHEOPS Fellow, SNSF NCCR-PlanetS.

can exceed 1 ms™' (see Fischer et al. 2016 and references
therein; Cegla 2019). This stellar variability can conceal and
even mimic planetary signals in RV surveys (Robertson et al.
2020), and has resulted in many false detections (e.g., CoRoT-
7d, Haywood et al. 2014; GJ 581d and g, Robertson et al. 2014;
and Alpha Centauri Bb, Rajpaul et al. 2016). Furthermore,
these stellar processes act on timescales between minutes and
months (Kjeldsen & Bedding 1995; Giles et al. 2017). For Sun-
like stars, the dominant contributions to these intrinsically
driven RV perturbations are from the suppression of convective
blueshift and brightness inhomogeneities modulated at the
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rotation period (Meunier et al. 2010; Dumusque et al. 2014).
The wide range of timescales and nontrivial correlations
between these processes require a sophisticated statistical
framework to decouple stellar activity processes from planetary
signals. Hall et al. (2018) and Haywood et al. (2020) study
these effects by recovering injected planets of known properties
into real data.

In this work, we use state-of-the-art Gaussian process (GP)
regression to account for the temporal correlations of
rotationally modulated stellar activity (Dumusque et al. 2017,
Damasso et al. 2019). This GP regression is trained on solar
data, as measured by a purpose-built solar telescope feeding the
High Accuracy Radial velocity Planet Searcher for the
Northern hemisphere (HARPS-N) spectrograph (Cosentino
et al. 2014) operating at the Telescopio Nazionale Galileo
(TNG) in the Canary Islands (Dumusque et al. 2015; Phillips
et al. 2016). In Section 2, we first present the solar data and the
GP regression along with the resulting fit on the daily averaged
solar RVs. In Section 3, we introduce synthetic planets of
varying semi-amplitude and orbital period in order to determine
the sensitivity of the GP regression to temperate, low-mass
planet searches. We conclude in Section 4 with an analysis of
the baseline of RV observations and model assumptions that
are necessary for a true exo-Earth detection.

2. Methods
2.1. Data

We take 5 minute disk averaged exposures of the Sun using
the solar telescope and the HARPS-N spectrograph at the TNG,
and use a baseline of around 800 days of near-continuous,
daytime solar spectra (Dumusque et al. 2015; Phillips et al.
2016). Neutral density filters in the HARPS-N calibration
system are used to match the solar flux to the exposure time
that is set to integrate over solar p-modes. For each exposure,
the HARPS-N Data Reduction Software (Baranne et al. 1996;
Sosnowska et al. 2012) computes the barycenter-corrected RV
with 0.4 ms ™' single exposure precision and the Mt. Wilson S
index (Wilson 1968), a measure of stellar magnetic activity
derived from chromospheric re-emission in the core of the
singly ionized Ca H and K line cores (Linsky & Avrett 1970).
The resulting RVs are further reduced, as described in Collier
Cameron et al. (2019), to remove the RV signatures of the solar
system planets, effects of differential extinction across the solar
disk in Earth’s atmosphere, and other systematic effects due to
Earth’s orbit around the Sun. Additionally, we eliminate
exposures contaminated by clouds or other significant atmo-
spheric losses. We realize signal-to-noise ratios (S/N) above
300 in most exposures. After cutting exposures contaminated
by clouds, we observe variations in the S/N below the 10%
level over many months with statistical RV precision varying
between 0.45 and 0.6 ms~'. We have not observed correlations
between extracted RVs and S/N. Finally, in order to mimic the
sampling of a typical stellar observing schedule while
preserving the exquisite S/N of the solar telescope (Phillips
et al. 2016), we compute daily averaged values of each quantity
including the RVs, the S index, and the corresponding mean
Julian date. While realistic stellar observing schedules would
not allow for this level of averaging, which integrates over
variability on minute and hour timescales, we wish to assess the
best-case scenario using an ultra-high S/N data set.

Langellier et al.

2.2. Gaussian Process Kernel

Magnetic variability can be the dominant source of variance
for stellar RVs of nearby, bright Sun-like and low-mass stars,
reaching levels surpassing 1 ms~' (Isaacson & Fischer 2010;
Motalebi et al. 2015). Intrinsic stellar variability introduces
correlations into the RV time series that are difficult to model
deterministically. GP regressions have emerged as a powerful
statistical technique that relaxes the assumption of uncorrelated
noise by adding nonzero terms to the off-diagonal of the data
covariance matrix. Usually a kernel function is chosen to
describe these covariances as a function of measurement
separation time (Rasmussen & Williams 2006; Haywood et al.
2014; Rajpaul et al. 2015; Faria et al. 2016; Damasso et al.
2019).

Since magnetic activity is well described by the S index and
is modulated at the rotation period of the star, we fit the S index
to a GP with a quasi-periodic (QP) covariance kernel function,
kop. This kernel function is chosen heuristically to model the
known properties of the magnetic activity, yielding the
correlation between two measurements at times #; and #; given
by

(t; — 1;)? 1 . (7@ —t)
kop(ti, 1) = exp| ———2— — —gin?| ——— 2 ||,
ar(tn 1) p( 22 2 B

ey

where 7 is related to the average lifetime of active regions on
the Sun, 7 is related to the average distribution of activity in the
photosphere of the Sun, and P, is approximately the synodic
rotation period of the Sun. Grunblatt et al. (2015) show that this
kernel function performs the best among three common GP
kernel functions. The GP regression also includes a white noise
(WN) term to account for additional uncorrelated noise sources
such as instrumental effects. Amplitudes of both the correlated
and uncorrelated terms are allowed to vary, leading to a
covariance matrix, Kg, with components

Ks, = ogpskap(tis 1) + own.slys 2)

where ogps and own,s are the two amplitudes, and I is the
identity matrix.

2.3. Fitting the S Index

With a single, time-independent parameter representing the
mean value of the S index, ug, the set of fit parameters contains
six variables:

0s = {1, 0gp,s, OWN,Ss T 15 Fot} 3)

and the GP likelihood function (Rasmussen & Williams 2006)
is given by

L(Bgs, t) ! exp( lAsTK’lAs) 4)

SIS, 1) = ————= - )
Jdet 27Ks) 2 S

where As=s — pug and s is a vector containing the daily
averaged S index at times ¢ for all the S index values shown in
Figure 1(a). Each parameter is assigned a uniform prior
probability with upper and lower bounds encompassing
realistic values, shown in Table 1. The posterior probability
distribution, pg(6s|s, ), is then proportional to L(Osls, t)
within the prior bounds and zero otherwise.
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Figure 1. GP regression fits to ~800 days of solar S index and RV data from the solar telescope and HARPS-N. (a) S index (blue) and GP regression fit (orange).
(b) Histogram of mean-subtracted S index values (blue) and histogram of the residuals of the GP regression fit (red). (c) Daily average RVs (blue) and GP regression fit
(orange). The mean value represents the HARPS-N instrumental offset and carries no physical meaning. (d) Histogram of mean-subtracted RVs (blue) and histogram
of the residuals of the GP regression fit (red). The rms variation is reduced from 1.65 to 1.14 m s, The relative size of the WN compared to the correlated noise is
higher in the RVs than in the S index, emphasizing the need for a more sophisticated model to account for RV variation.

Table 1
Summary of Parameters Used for Markov Chain Monte Carlo Sampling for the S Index and RV Fits of Solar Telescope and HARPS-N Data
Fit Parameter Description Units Prior MCMC Initial Guess Fit Value
05 (S index parameters) i S index mean U(0.15, 0.17) mean(s) = 0.1626 0.162713:5003
oops correlated noise amplitude U103, 107h std(s) = 1.83 x 1072 1431049 x 1073
OwN.S WN amplitude U103, 107h std(s) = 1.83 x 1073 0.178+3507 x 1073
T active region lifetime days U(5, 100) 22 23,611
n smoothing parameter U(0.1, 0.9) 0.5 0.58%0:0¢
P solar rotation period days U(24, 32) 27 28.1f8j§
Orv (RV parameters) LRV RV mean ms~! U7, 113) mean(r) = 102.4 102.4193
GQPRV correlated noise amplitude ms! U(0.01, 10) std(r) = 1.65 1.4410:18
OWN.RY WN amplitude ms™! U(0.01, 10) std(r) = 1.65 1.2579%

Note. The upper and lower bounds of the uniform priors are given in addition to the initial guesses used for each parameter. The last column shows the resulting
median value of the MCMC samples and their corresponding 16% and 84% quantiles as error bars.

We estimate the posterior distribution using an affine-invariant
Markov chain Monte Carlo (MCMC) method, implemented with
the Python (van Rossum 1995) packages NumPy (Harris et al.
2020), SciPy (Virtanen et al. 2020), emcee (Foreman-Mackey
et al. 2013), and George (Ambikasaran et al. 2015). Following
Foreman-Mackey et al. (2013) 32 walkers are used to sample the
parameter space, and are initialized with a normal distribution
around mean values from a maximume-likelihood fit and known
properties of the Sun. These values are summarized in Table 1.
The first 100 samples are discarded allowing the walkers to
converge to the posterior distribution before evaluating an
additional 50,000 samples per walker. To remove correlations
between samples, they are thinned by keeping one out of every
ng samples for each walker, where ng =21 is the average

correlation length of the walkers as estimated by the autocorrela-
tion. This yields a total of 76,032 uncorrelated samples for each
parameter. .

The resulting parameter estimates, s, are displayed in the
last column of Table 1 as the median value of these
uncorrelated samples. The error bars are reported as the
corresponding 16% and 84% quantiles. The values obtained are
consistent with known solar properties. Of note is the active
region lifetime, 7, which is less than one rotation period despite
lifetimes of photospheric faculae typically being greater than
six rotation periods. Variability of the distribution of faculae on
the solar surface is expected to drive this value down below the
lifespan of an individual facular region. The GP regression fit
to the S index and a histogram of the residuals are shown in
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Figure 2. Marginalized distributions of the posterior distribution given by the MCMC samples. The lower left triangle shows samples (and contour lines) from the S
index fit and the upper right triangle shows samples (and contour lines) from the RV fit. Each parameter is unimodal and only slight correlations exist between the

parameters. Thus both posterior distributions are well behaved.

Figures 1(a), (b). The variances and covariances of the MCMC
samples are shown graphically in the bottom left half of
Figure 2. The largest correlations are the (1, ogps) and (7,
own.s) pairs with statistically significant Pearson correlation
coefficients (Student 1908) of 0.49 and 0.42, respectively. This
could indicate an unaccounted for spatial dependence in the
magnetic activity. Furthermore, significant correlations exist in
the (, 7) and (1, P.o) pairs, potentially reflecting the migration
of active regions from higher latitudes (and thus longer rotation
period) to lower latitudes (and thus shorter rotation period)
over the 2.2 yr of data. Additionally, ogps increases slightly
with 7, lending further evidence to a time dependence in
the fit parameters as 7 will be longer for the on average larger,

longer-lived active regions earlier in the solar magnetic cycle.
These correlations suggest a more sophisticated model may more
closely represent the physical mechanisms in the photosphere of
the Sun and thus capture more of the RV variation due to
activity. Further investigation of these correlations are left to
future study.

2.4. Fitting the RVs

We assume that the magnetic activity driving the S index
also affects the observed RVs with equivalent correlated
variability and thus may be described with equal GP regression
parameters: 7, 1, and P,y Unlike Rajpaul et al. (2015) who fit
the S index and RVs simultaneously, we model the S index and
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RVs consecutively in order to reduce computational complex-
ity inherent to GPs and MCMC. Although a small improve-
ment would be expected from simultaneous fitting, we do not
anticipate this would change the overall conclusion of this
work. We fit the RVs using the same QP kernel function of
Equation (1) with the spot lifetime, 7, spot distribution, 7, and
the rotation period, P, fixed at the median value from the S
index fit. Because the effects of solar system planets have
already been removed from the RVs, we are left with only three
fit parameters:

Orv = {try> OQP,RV> OWN,RV ) (5)

and the likelihood function becomes

L(Orylr, t) = exp(f%ArTK]{\}Ar), 6)

1
Jdet 2nKgry)

where Ar=r — ugry, r is a vector of the RVs at times #, and
Krv is populated with Ogy by substituting all “S” subscripts
with “R” in Equation (2). Priors are shown in Table 1.

The posterior probability, pgy (Orv|r, £), is proportional to
the likelihood function within the bounds of the prior and zero
otherwise. It is sampled using the same MCMC protocol as
with the S index and we observe a correlation length of
ngy = 11. Retaining one of every ngry samples leads to a total
of 145,312 uncorrelated samples. The parameter estimates,
Ory, are summarized in Table 1 and the resulting GP regression
fit and residuals are shown in Figures 1(c) and (d). The fit
reduces the rms scatter in the data from 1.65 to 1.14ms™ ',
consistent with Milbourne et al. (2019), Miklos et al. (2020),
and other solar analyses (see Section 5). The marginalized
distributions are shown in Figure 2 and again display a well-
behaved posterior distribution. The only significant correlation
exists between ogpryv and owngrv and is negative, which is
expected as these parameters will trade off the amount of
variation seen in the RVs.

3. Sensitivity Map
3.1. Synthetic Planet Model

To explore the limits of our GP regression for detecting low-
mass, long-period exoplanets, we inject synthetic planets with
varying Keplerian parameters into the solar RVs. The general
Doppler-induced RV, vgy(?), of a host star by a companion
planet is given by

vry (1) = Kpilcos(w + v (t]ty, By, €)) + ecos(w)],  (7)

where K is the semi-amplitude, w is the argument of
periastron, e is the eccentricity, #, is the time of pericenter
passage, Py, is the orbital period, and V(t|tp, Py, €) is the true
anomaly (Perryman 2011). As a best-case scenario, we restrict
ourselves to circular orbits (i.e., e =0), which simplify the
Doppler shift to the sine function

vry () = Koy sin(fj” + ¢), ®)

orb

where ¢ is an arbitrary phase. A synthetic planet is then
generated by choosing values for the semi-amplitude, orbital
period, and phase followed by adding vgy(#) to the vector of
measured solar RVs, r, observed at times, ¢. The vector of the
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RVs thus undergoes the transformation
r—r -+ VRv(t). (9)

The GP regression now contains a mean function given by
the addition of the overall mean value of the RVs, ury, along
with the Keplerian parameters required to describe the injected
circular planetary orbit. This list of fit parameters, Oy, then
becomes

Orv = {Kp1, B, @, [iry> OQP,RV> OWN,RV} (10)

and the likelihood function is still given by Equation (6), with
the exception that the vector of the fit residuals becomes
Ar =r — (ugy + vryv(@)) with ¢ as the vector of observation
times and vgy as the function defined in Equation (8).

3.2. Retrieval of Injected Signals

Using the techniques of the previous section, we construct a
map of detection sensitivities for a range of synthetic, low-
mass, long-period planets. Our grid contains 210 injected
planets with semi-amplitudes from 0.6 to 2.4ms ™ 'in0.2ms"'
steps and orbital periods from 100 to 500 days in 20 days steps.
The phase of each planet is drawn from a uniform distribution,
¢ ~ U(—0.1, 0.1) radians, and the prior on the phase is uniform
from —m to 7 radians. This is done to avoid numerical
instabilities associated with the phase occurring near the
boundary of the prior. The prior on the semi-amplitude allows
only positive values less than 10ms~' and the prior on the
orbital period is in the range (%Pgrb, 2PR,). For planets detected
with a high degree of statistical significance, the priors are
uninformative and do not affect the results. However, for the
lowest mass planets with 1o detections or less, the priors do
constrain the results as described below. These planets set the
lower bound on the range of injected semi-amplitudes used in
this analysis.

We draw MCMC samples, exploring the semi-amplitude and
orbital period linearly, in the same fashion as the previous
section with the non-Keplerian parameter priors unchanged.
We again define the parameter estimates, Ory, as the median
value of the uncorrelated samples and the corresponding lower
and upper bounds, Ogv jower ad Ory ypper, as the 16% and 84%
quantiles. The statistical significance, SS;, is defined as

SS; = 19 (11)

A

] A~ b
5(9 i,upper — ei,lower)

where 6; is a given parameter from the vector defined in
Equation (10). We plot the statistical significance of the
recovered orbital period and semi-amplitude of the 210
synthetic planets in Figure 3. The orbital period is determined
with a high degree of statistical significance, though for semi-
amplitudes below 1 ms~' this should be taken as an upper
bound as the MCMC samples begin to encounter the edges of
the uniform prior. The semi-amplitude, however, is much less
certain. For a 50 “discovery” threshold, planets with a semi-
amplitude less than 1 ms~" would require more observations
than the 800 days of solar telescope data used in this analysis.
The structure of the contours in Figure 3(a) is likely due to our
noncontinuous observing schedule. In particular, Nava et al.
(2019) find that activity-driven signals at orbital periods
unrelated to either planetary orbital periods or the stellar
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Figure 3. Sensitivity maps of the recovered (a) semi-amplitude, K, and (b) orbital period, Py, of synthesized planets using the GP regression with synthetic
planetary signals injected into the 800 days of solar RVs. Color bars show the statistical significance (SS) of the recovered parameters as defined in Equation (11). The
white lines in panel (a) show contours of 20, 30, ... statistical significance and the white lines in panel (b) show contours of 5o, 100, 200, 300, and 500 statistical
significance. Each “pixel” in either image represents one of the 210 simulated planets. The orbital period is generally recovered with a high degree of confidence but
the semi-amplitude is only recovered at the 5o level for planets with semi-amplitude above 1 ms™".

rotation period can arise from uneven sampling. Thus even the
near-daily, long-baseline observing schedule of the solar
telescope decreases the semi-amplitude sensitivity (Hall et al.
2018). We find agreement within parameter uncertainties
between the injected and extracted orbital periods and semi-
amplitudes, suggesting no systematic effects induced by the
GP regression. In the next section we explore the baseline
of observations required to detect sub-ms ' planets using
completely synthetic RVs.

4. Synthetic RVs

To study longer observing baselines than in the previous
section, we synthesize not only Keplerian Doppler shifts, but
also the solar RVs themselves. We thus extend the observing
baseline to determine the requirements for detecting a low-
mass, long-period analog. A synthetic planet with the orbital
period of Venus (225 days) is injected with varying semi-
amplitude. We use the orbital period of Venus to avoid
systematic biases associated with measuring any periodic
signal at 365 days.

4.1. Observing Schedule

The first step to synthesize solar telescope data is to create a
realistic observing schedule to account for inclement weather
and telescope downtime. We assume a naive model where each
calendar month, m, is assigned an observation probability,
Pobs(m), which represents the fraction of days that have
observations in month m. These probabilities are estimated
using historical solar telescope data with the corresponding
fraction of days with 10 or more observations. These
probabilities are shown in red in Figure 4(a).

For any given day d in month m, a uniform random number,
r(d)~ U, 1), is drawn and compared to pops(m). If r(d) <
Pobs(m), an observation occurs. This process is repeated for as
many consecutive days as needed. Using this process, we
create a synthetic 30 yr observing schedule mimicking the solar
telescope seasonal variations. The resulting synthetic observing
schedule is shown in blue in Figure 4(a).

4.2. Observation Times

The second step for simulating data is to generate an
observation time for each day with an observation. We begin
by computing the mean observation time of all exposures in
each day from historical solar telescope data, limiting only to
days with at least 10 exposures. This distribution of mean
observation times is histogrammed and fit to a Gaussian kernel
density estimate (KDE; Scott 2015). Synthetic observation
times are drawn from this KDE. Figure 4(b) shows the
distribution of mean telescope exposure times and the resulting
observation times drawn from the KDE. These observation
times coupled with the observing days from the previous
section completely determine the observing schedule of the
simulated data.

4.3. Synthesized RVs

Finally we synthesize the RVs in two steps. The first step
repeats the procedure from Section 3 whereby a Keplerian term
given by Equation (8) is generated with several test semi-
amplitudes and a phase drawn randomly in the interval (—0.1,
0.1) radians. The orbital period, however, is fixed at 225 days.
The second step involves modeling the magnetic activity by
using a GP with the same kernel function given in Equation (2).
The parameter values used to populate the covariance matrix
are taken from the GP regression fit of the solar data as given in
Table 1. A random sample of RVs is then drawn from the GP
using these parameter values and the synthetic observation
times generated in the previous section. The sum of the
Keplerian term and the GP term constitute the full RV
synthesis. Note that the solar telescope RVs only cover a
fraction of the solar magnetic cycle during solar minimum. As
such we do not model RV variability during high activity
levels. Thus, our resulting synthetic RVs represent a best-case
scenario, as other Sun-like stars tend to have higher levels of
magnetic activity than the Sun (Reinhold et al. 2020).
However, we emphasize that many recent studies successfully
treated stellar variability by applying GP regression in RV
variations of stars much more active than the Sun, such as the
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Figure 4. Generating synthetic RVs based on historical solar telescope observations. (a) Seasonal variation of solar telescope and synthetic observations. Red
histogram shows the fraction of days with at least 10 5-minute exposures for 12 evenly spaced sections of a year (does not correspond to calendar months). Blue
histogram shows the analogous ratio of seasonal observations from dates synthesized from the red histogram. (b) Histogram of RV observation times given as a
fraction of a day since noon UTC: blue—all 5 minute solar telescope exposures, orange—daily averaged observation times for days with at least 10 5-minute
exposures, and green—synthesized observation times using a Gaussian kernel density estimate. (c) Statistical significance (SS), defined in Equation (11), of the
recovered semi-amplitude, K, using a GP regression for an exo-Venus (225 day orbital period) as a function of baseline of data. Solid (circles) and dashed (triangles)
curves show the SS for an exo-Venus with semi-amplitudes of 1.0 ms ™' and 0.5 ms ™', respectively. Dashed—dotted (squares) curve shows an upper bound for a
semi-amplitude of 0.1 m s~ ', Dashed gray line shows the 5o detection threshold. (d) SS for a 0.1 m s~ exo-Venus with stellar variability perfectly removed (i.e., only
WN). Solid and dashed curves show the SS for WN amplitudes of 0.2 m s~ and 0.8 m s, respectively. Error bars are shown as vertical lines and are too small to be
seen for baselines less than 15 yr. Again, the dashed gray line shows the 5o detection threshold.

young pre-main-sequence stars V830 Tau (Donati et al. 2016)
and AU Mic (Klein et al. 2020). In both studies, they were able
to detect and characterize planetary signals with amplitudes five
times smaller than the intrinsic RV variations. Therefore, we
expect that an analysis including a detailed model of the solar
magnetic cycle would not appreciably change the conclusions
of this work, but confirmation is left to future study when
precise RVs have been measured across a full solar cycle.

We then draw MCMC samples and define the parameter
estimates and lower and upper bounds as before to determine
the statistical significance of the recovered semi-amplitude for
baselines of data equal to 2, 4, 8, 16, and 24 yr. We repeat this
process for semi-amplitudes equal to 1, 0.5, and 0.1 m s™'. The
resulting statistical significances are shown in Figure 4(c). The
dashed—dotted curve representing the 0.1 ms™ ' planet repre-
sents an upper bound, with the prior probability distribution on
the semi-amplitude restricting its value to be positive. Even for
a0.5ms”" planet, we determine that between 10 and 15 yr of
data are needed to reach the 5o discovery threshold using this
GP regression and data similar to that of the HARPS-N solar
telescope.

As shown above, a multidecade temporal baseline is required
to detect a temperate, low-mass planet orbiting a Sun-like star
using this GP regression. Thus we next assume that we have a
direct measurement of the magnetic variability of the target star
and are able to perfectly remove the effects of variability from
the RVs, leaving only the planetary signals and WN. We can
then fit to a sine curve with simple least-squares methods. We
expect the semi-amplitude uncertainty, o, to scale with the
measurement sensitivity, ory, divided by the square root of the
number of RV measurements, N (Cloutier et al. 2018),

_ 2
UKpl = ORV N

To confirm this scaling, we synthesize RV time series
comprising simple WN and a Keplerian Doppler shift of
K, =0.1m s~! for an injected planet with an orbital period of
225 days (i.e., an exo-Venus). We generate this data for
varying baselines and WN levels of both 0.8 and 0.2ms .
The statistical significance of the semi-amplitude, K, from
least-squares fits to these data sets are shown in Figure 4(d) and
are in good agreement with expectations set by Equation (12).

(12)
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We emphasize that we need to reduce the WN to levels
approaching 0.2ms ™' to reach the 5o detection threshold in
only a few years for a true exo-Venus.

5. Discussion and Conclusions

The GP regression of Section 2 reduces the rms variation of
the solar RVs from 1.65 to 1.14ms~'. However, treating
stellar variability with this GP regression still requires 10-15 yr
of densely sampled RV observations to detect long-period,
low-mass planets. This is much longer than would be expected
if the RVs contained purely uncorrelated WN. This result is in
line with more physically motivated techniques. For example,
Milbourne et al. (2019) used magnetograms and Dopplergrams
from the Helioseismic and Magnetic Imager (HMI) on board
the Solar Dynamics Observatory to derive activity-driven RV
time series. By modeling the HARPS-N RVs using these
activity time series, they reduced the RV rms from 1.65 to
1.21ms™ . Haywood et al. (2020) reduced the RV rms to
0.85ms ' by modeling the RVs with a linear combination of
the unsigned magnetic flux from HMI and the total solar
irradiance, using the FF' method (Aigrain et al. 2012). Fitting
our GP regression to the unsigned flux may yield a smaller
variation in the RV residuals, and this will be investigated in a
future work. Dumusque (2018) and Cretignier et al. (2020)
used logistic regression and gradient boosting on HARPS-N
solar spectra to differentiate activity sensitive and insensitive
lines. Computing RVs from these sets of lines reduced the RV
rms to 0.9 ms™ . Similarly, Miklos et al. (2020) applied the
techniques of Meunier et al. (2017) to the HARPS-N solar RVs
to estimate magnetoconvective RV variations. This analysis,
however, was unable to reduce the observed rms RVs.

That the GP regression—a statistical tool—performs simi-
larly to these more physically motivated analyses demonstrates
its power: rather than requiring high-resolution solar images or
specially tuned line lists, the GP regression assumes a
correlation between the solar S index and observed RVs.
However, the fact that the GP analysis and these physically
motivated techniques arrive at the same approximately 1 ms ™"
RV uncertainty level indicates that something else—either
another physical process operating on a different timescale or
an instrumental systematic—is limiting the performance of
these techniques. Haywood et al. (2020) discuss some physical
effects missing from the current models, to be addressed in
future work. However for current data analysis models, the
solar data set used in this work, with nearly 2.5 yr of near-daily
observations mostly in the decline phase of Cycle 24,
represents a best-case scenario; we can therefore only perform
5o recoveries of long-period planets with semi-amplitudes
greater than 1 ms™', consistent with the results of the recent
community-wide RV challenge of Dumusque et al. (2017).

Our work using synthetic RVs indicates that more observa-
tions will not quickly overcome this limit: as shown in
Figure 4, it will take 1015 yr to reach 50 on a 0.5ms ' RV
signal with a 225 days period (i.e., the orbital period of Venus),
and at least 25 yr for a 0.1 ms~' RV signal. The last panel of
this figure also indicates that a perfect model of activity-driven
correlated variations would not in itself suffice for the rapid
detection of an exo-Venus or an exo-Earth; even in the absence
of correlated noise, a current-generation spectrograph with a
long-term stability of about 0.8 ms~' would need a 1015 yr
observing baseline to reach a 50 detection of an exo-Earth.

Langellier et al.

Successful exo-Earth discovery therefore requires both more
sophisticated models of stellar variability and the improved
RV precision, long-term stability, and dense observational
sampling from a next-generation spectrograph (Wright &
Robertson 2017) such as the Echelle SPectrograph for Rocky
Exoplanets and Stable Spectroscopic Observations (ESPRESSO;
Pepe et al. 2013, 2021; Damasso et al. 2020; Sudrez Mascarefio
et al. 2020), NEID (Allen et al. 2018), EXtreme PREcision
Spectrometer (EXPRES; Jurgenson et al. 2016; Blackman et al.
2020; Brewer et al. 2020; Petersburg et al. 2020), HARPS3
(Thompson et al. 2016), or GMT Consortium Large Earth Finder
(G-CLEF; Szentgyorgyi et al. 2014).
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