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Abstract

Ultra-short period (USP) planets are a class of low-mass planets with periods shorter than one day. Their origin is
still unknown, with photo-evaporation of mini-Neptunes and in situ formation being the most credited hypotheses.
Formation scenarios differ radically in the predicted composition of USP planets, and it is therefore extremely
important to increase the still limited sample of USP planets with precise and accurate mass and density
measurements. We report here the characterization of a USP planet with a period of 0.28 days around K2-141
(EPIC 246393474), and the validation of an outer planet with a period of 7.7 days in a grazing transit configuration.
We derived the radii of the planets from the K2 light curve and used high-precision radial velocities gathered with
the HARPS-N spectrograph for mass measurements. For K2-141b, we thus inferred a radius of 1.51±0.05RÅ
and a mass of 5.08±0.41MÅ, consistent with a rocky composition and lack of a thick atmosphere. K2-141c is
likely a Neptune-like planet, although due to the grazing transits and the non-detection in the RV data set, we were
not able to put a strong constraint on its density. We also report the detection of secondary eclipses and phase curve
variations for K2-141b. The phase variation can be modeled either by a planet with a geometric albedo of
0.30±0.06 in the Kepler bandpass, or by thermal emission from the surface of the planet at ∼3000 K. Only
follow-up observations at longer wavelengths will allow us to distinguish between these two scenarios.

Key words: planetary systems – planets and satellites: composition – planets and satellites: individual (K2-141b,
K2-141c) – planets and satellites: interiors – stars: individual (K2-141) – techniques: photometric – techniques:
radial velocities
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1. Introduction

The origin of ultra-short period (USP) planets, i.e., planets with
periods shorter than one day and radii smaller than 2 RÅ, is still
unclear. An early hypothesis suggested that USP planets and small
planets in general were originally Hot Jupiters (HJs) that
underwent strong photo-evaporation due to the high insolation
flux, (e.g., thousands of times that of Earth, Lecavelier des Etangs
et al. 2004) ending up with the complete removal of their gaseous
envelope and their solid core exposed. The paucity of gas giants
observed in the photo-evaporation desert, i.e., the region around a
star where only solid cores of once-gaseous planets could survive,
is the most convincing proof of evaporation as a viable process to
form small planets (e.g., Lecavelier Des Etangs 2007; Davis &
Wheatley 2009; Ehrenreich & Désert 2011; Beaugé & Nesvorný
2013). In the case of USP planets, Sanchis-Ojeda et al. (2014) also
found an occurrence rate of USP planets similar to that of HJs
using data from the Kepler mission, but recently, thanks to Keck
spectroscopy on a magnitude-limited subset of the same sample,
Winn et al. (2017) discovered that the metallicity distributions of
the two populations are significantly different, thus rejecting the
idea of a common origin. The same study supports a similar
hypothesis in which the progenitors of USP planets are not the HJs
but the so-called mini-Neptunes, i.e., planets with rocky cores and
hydrogen–helium envelopes, typically with radii between 1.7 and
3.9 RÅ and masses lower than ∼10MÅ. An origin of USP planets
as photo-evaporated mini-Neptunes is also consistent with the
lack of planets with radii between 2.2 and 3.8 RÅ with
incident flux higher than 650 times the solar constant
(Lundkvist et al. 2016), the gap between 1.5 and 2 RÅ in
the population of planets with periods shorter than 100 days
(Fulton et al. 2017), and the multiplicity of USP planets,
typically found with small companions at longer periods
(Sanchis-Ojeda et al. 2014). While observations of known
HJs have confirmed the stability of their atmospheres against
evaporation (starting from Vidal-Madjar et al. 2003), and
theory has always struggled to explain the strong photo-
evaporation that HJs should undergo to become USP planets
(e.g., Murray-Clay et al. 2009), removing the outer envelope
of a mini-Neptune is theoretically less challenging and several
models have successfully reproduced the properties of observed
USP planets using either photo-evaporation (e.g., Lopez 2017)
or improved models for Roche lobe overflow (e.g., Jackson
et al. 2017), in agreement with observations of mini-Neptunes
undergoing evaporation (Ehrenreich et al. 2015). Alternatively,
USP planets may represent the short-period tail of the
distribution of close-in rocky planets migrated inwards from
more distant orbits (e.g., Lee & Chiang 2017) or formed in situ
(e.g., Chiang & Laughlin 2013), although the latter hypothesis
would have difficulties explaining the presence of thick
envelopes accreted within the snow line.

It appears clear that only a systematic study of the internal
and atmospheric composition of USP planets, in conjunction
with the amount of irradiation to which they are subjected and
the presence of other companions in the system, can shed light
on their origin. In order to do so, we need precise and accurate
measurements of both their radius and mass. Most of the
Kepler and K2 USP candidates orbit stars too faint for precise
radial velocity (RV) follow-up, and so far only a handful of
USP planets have reliable density estimates.

In addition to discovering most of the USP planets known
to date, the excellent quality of Kepler data has also revealed
the secondary eclipse and phase variations of two of them,

namely Kepler-10b (Batalha et al. 2011) and Kepler-78b
(Sanchis-Ojeda et al. 2013). If USP planets were really
lava-ocean worlds, their atmospheres would be likely made
of heavy-element vapors with a very low pressure and, being
tidally locked, would experience extremely high day-night
contrasts (Léger et al. 2011). Consequently, the bottom of the
secondary eclipse is expected to be about at the same level as
just before/after the primary transit, when only the nightside of
the planet is in view. This seems to be the case with Kepler-78b
(Sanchis-Ojeda et al. 2013) and Kepler-10b (Esteves et al.
2015), even though a non-negligible nightside temperature for
the latter has been reported by Fogtmann-Schulz et al. (2014).
The geometric albedos of both planets could not be well
constrained because of the degeneracy between thermal and
reflected light in the Kepler bandpass, which could be broken
with observations of the occultation and phase curve at IR
wavelengths (e.g., Schwartz & Cowan 2015). Noteworthy is
the attempt by Rouan et al. (2011) to use a lava-ocean model to
interpret the optical occultation and phase curve of Kepler-10b.
In this paper, we report on the discovery, characterization, and

confirmation of an USP planet, and the discovery and validation
of an outer companion planet with grazing transits around an
active K4 dwarf, K2-141 (EPIC 246393474), discovered in the
Campaign 12 data of the K2 mission and then observed with
the high-precision HARPS-N spectrograph for RV confirmation.
We tackled the determination of mass and radius of the star,
which ultimately can affect the planets’ properties, using three
independent methods for the atmospheric parameters and
including any additional data available from the literature. After
validating the planets, we measured their masses using three
methods that rely on different assumptions for the stellar activity
modeling, to ensure that our mass estimates are not biased by a
specific choice of stellar activity treatment. We compare the
density obtained for K2-141b with the distribution of USP
planets in the mass–radius (M–R) diagram. We also detected the
secondary eclipse and phase variations of planet b in the K2 light
curve and used this information to constrain the geometric
albedo of the planet and its thermal emission.29

2. Observations

2.1. K2 Photometry

K2-141 first came to our attention after it was observed with
the Kepler Space Telescope during Campaign 12 of its
extended K2 mission.30 K2-141 was observed by K2 for about
80 days between 2016 December 15 and 2017 March 4, with a
loss of 5.3 days of data due to a safe mode state, presumably
caused by a reset of flight software. Afterwards, the data were
downlinked to Earth, processed by the Kepler pipeline to
calibrate the raw pixel level data, and released publicly. We
downloaded the data for K2-141 and all other targets observed
by K2 during Campaign 12 from the Mikulski Archive for
Space Telescopes (MAST),31 produced light curves from the
calibrated pixel files following Vanderburg & Johnson (2014),
and searched for transits as described by Vanderburg et al.
(2016b). Our transit search identified a strong signal at a period

29 K2-141b has been independently discovered, confirmed, and characterized
by Barragán et al. (2018). Their results are in very good agreement with
those presented here.
30 The star was proposed as a target from the following K2 General Observer
programs: 12071, D. Charbonneau; 12049, E. Quintana; 12122, A. Howard;
12123, D. Stello; 12904, K2 GO Office.
31 https://archive.stsci.edu/k2/
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of only 6.7 hr. Using LcTools32 (Kipping et al. 2015), we
color coded this signal in order to enhance the visibility of
hidden candidate signals, and a subsequent visual inspection of
the K2 light curve revealed a second planet candidate with a
period of 7.75 days. The duration of the second transit signal is
short and V-shaped—consistent with a planet transiting in a
grazing architecture—which is likely why our automated
search pipeline failed to identify the signal. We pinpoint a
total of nine transits of K2-141c during the K2 baseline, one
transit was lost while Kepler was in safe mode. All overlaps of
the two planets consist of single long cadence data points and
none of these are located at mid-transit. We confirmed the
periodicity with a subsequent, more thorough analysis follow-
ing the prescriptions of Bonomo et al. (2012). The full K2 light
curve is shown in Figure 1. In addition to the two transiting
signals, there is a clear modulation (total excursion of
0.015 mmag) most likely due to the stellar activity of the star.

After removing the stellar activity signal from the K2 light
curve and phase-folding the data to the orbital period of
K2-141b, we also identify the signal of the secondary eclipse of
this planet, centered around phase 0.5 and with a duration
consistent with that of the primary transit. In addition to the
eclipse signal, we observe what appears to be modulation of the
light curve with phase. We further explore these features in
Section 7. We repeated this analysis for planet c and did not
find any evidence of a detectable phase curve or secondary
eclipse.

2.2. Radial Velocities

We collected 44 spectra using HARPS-N at the Telescopio
Nazionale Galileo (TNG), in La Palma (Cosentino et al. 2012),
with the goal of precisely determining the mass of the USP
planet. To reach this goal, we followed a twofold strategy: we

gathered at least two points each night (when weather allowed)
in order to remove activity variations by applying nightly
offsets (e.g., Hatzes et al. 2011; Pepe et al. 2013), and we
observed the target for a duration of a few stellar rotations to be
able to use GP regression (e.g., Haywood et al. 2014; Rajpaul
et al. 2015) to model the stellar activity signals directly.
At the magnitude of our target (V=11.5), HARPS-N delivers

an average RV internal error of 2.9 m s−1 for a single exposure
of 1800 s (average S/N of 42 at 5500Å), to be compared with
an instrumental stability better than 1 m s−1(Cosentino et al.
2014). In other words, our error budget is largely dominated by
photon noise.
Therefore, we chose the objAB observational setup, i.e., the

second fiber (fiber B) observed the sky instead of acquiring a
simultaneous Fabry–Perot calibration spectrum to correct for
the instrumental RV drift.
Data were reduced using the standard Data Reduction

Software (DRS) using a K5 flux template (the closest match to
the spectral type of the target) to correct for variations in the
flux distribution as a function of the wavelength, and a K5
binary mask to compute the cross-correlation function (CCF;
Baranne et al. 1996; Pepe et al. 2002). We corrected the spectra
for Moon contamination as explained in Malavolta et al.
(2017a), and found that only two spectra were strongly affected
by sky background. The resulting RV data with their formal 1σ
uncertainties and the associated activity indices (see Section 4
for more details) are listed in Table 1.

3. Stellar Parameters

For late-type stars like our target, systematic errors in the
stellar photospheric parameters due to different assumptions
and theoretical models largely dominate the internal error
estimates for the most diffused methods, e.g., see the spread in
temperature and metallicity in the case of the bright star HD
219134 (Motalebi et al. 2015). In this work, we obtained the
stellar photospheric parameters with three complementary
methods, and we assumed s = 100Teff K, s = 0.2glog ,s =[ ]Fe H
0.06 as a good estimate of the systematic errors regardless of
the internal error estimates, for all methods. This choice also
avoided privileging one technique over the others when
deriving the mass and radius of the star.
Empirical calibration—CCFpams33 is a method based on

the empirical calibration of temperature, metallicity and gravity
on the equivalent width of CCFs obtained with selected subsets
of stellar lines, according to their sensitivity to temperature. We
refer the reader to Malavolta et al. (2017b) for more details on
this method. CCFs were computed on the individual spectra
and then co-added for their equivalent width measurement. We
obtained Teff =4713 K, log g=4.76 (after applying the
correction from Mortier et al. 2014) and [ ]Fe H =−0.15.
Equivalent widths—The classical curve-of-growth approach

consists in deriving temperature and microturbulent velocity xt
by minimizing the trend of iron abundances (obtained from the
equivalent width of each line) with respect to excitation
potential and reduced equivalent width, respectively, while the
gravity log g is obtained by imposing the same average
abundance from neutral and ionized iron lines. Equivalent width
measurements were carried out with ARESv234 (Sousa et al. 2015),

Figure 1. Top panel: K2 light curve of K2-141. Bottom panel: a portion of the
light curve is shown to highlight the two transiting planets.

32 Available at https://sites.google.com/a/lctools.net/lctools/home.

33 Available at https://github.com/LucaMalavolta/CCFpams.
34 Available at http://www.astro.up.pt/~sousasag/ares/.
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while line analysis and spectrum synthesis was performed using
MOOG35 (Sneden 1973) jointly with the ATLAS9 grid of stellar
model atmosphere from Castelli & Kurucz (2004), under the
assumption of local thermodynamic equilibrium (LTE). We
followed the prescription of Andreasen et al. (2017) and applied
the gravity correction from Mortier et al. (2014). The analysis was
performed on the resulting co-addition of individual spectra. We
obtained Teff=4518K, log g=4.76, [ ]Fe H =0.00 and
xt=0.63±0.35 km s−1.

Spectral synthesis match—The Stellar Parameters Classifi-
cation tool (SPC; Buchhave et al. 2012, 2014) performs a
cross-correlation of the observed spectra with a library of
synthetic spectra and then interpolates the resulting correlation
peaks to determine the best-matching effective temperature,
surface gravity, metallicity, and line broadening. The quoted
results are the average of the values measured from each
exposure. We obtained Teff=4622 K, log g=4.63, [ ]M H =
0.00 and v sin i=1.5±0.4 km s−1.

We determined the stellar mass and radius using iso-
chrones (Morton 2015a), with posterior sampling performed by
MultiNest (Feroz & Hobson 2008; Feroz et al. 2009, 2013).
We provided as input the parallax of the target from the Tycho-
GAIA Astrometric Solution (p=17.0±0.8 mas, d=59±3 pc,
Gaia Collaboration et al. 2016a, 2016b) plus the photometry from
the Two Micron All Sky Survey (2MASS; Cutri et al. 2003;
Skrutskie et al. 2006) and theWide-field Infrared Survey Explorer
(Wright et al. 2010). We did not use the GAIA magnitude because
it was not consistent with the measured parallax and the wide-
band photometry. For stellar models, we used both MESA
Isochrones and Stellar Tracks (MIST; Paxton et al. 2011; Choi
et al. 2016; Dotter 2016) and the Dartmouth Stellar Evolution
Database (Dotter et al. 2008). To assess the influence of the
broadband photometry and the different photospheric parameters,
for each set of spectroscopic parameters we performed the
analysis including both or only one of the photometric sets, for
a total of nine posteriors sampling distribution for each
parameter. From the median and standard deviation of all
the posterior samplings we obtained M =0.708±0.028 M
and R =0.681±0.018 R. We derived the stellar density
r =2.244±0.161 r directly from the posterior distributions of
M and R . The astrophysical parameters of the star are

summarized in Table 2, where the temperature, gravity and
metallicity are those obtained from the posteriors distributions, in
a similar fashion to mass and radius, and take into account the
constraint from GAIA parallax. The ¢Rlog HK quoted in the table
was obtained using the calibration from Lovis et al. (2011) and
assumed - =B V 1.19 instead of - =B V 0.69 as listed in the
Simbad catalog (Wenger et al. 2000), which is not consistent with
the spectral type of the star. The chosen value is set by the upper

limit in the calibration, which is however well within the error
bars of the outcome of the isochrone fit, - = B V 1.21 0.20.
Nevertheless, this estimate of ¢Rlog HK should be taken with
caution.

4. Stellar Activity

The precise and continuous coverage provided by K2
photometry offers the best chance to determine the stellar
rotation period and put a lower limit to the decay timescale of
the active regions. In the following, we performed the analyis
on the K2 light curve after removing those points affected by a
transit, using the solution in Section 6.
The Generalized Lomb–Scargle (GLS; Zechmeister & Kürster

2009) periodogram of the light curve and the bisector inverse
span (BIS) detected a main periodicity around 7 days. The
spectroscopic activity diagnostics, namely the Full Width Half
Maximum (FWHM) of the CCF, the ¢Rlog HK index (Lovis
et al. 2011), and the Hα index (Gomes da Silva et al. 2011;
Robertson et al. 2013), however, did not confirm this result, all
suggesting instead a main periodicity around 14 days (Figure 2).
The auto correlation function on the K2 data, computed as
described in McQuillan et al. (2013)36 also converged to 14 days.
We note that the lack of precise photometry in the B and V bands
prevented us from determining an accurate ¢Rlog HK so we
decided to analyze the SHK index instead.
An accurate value for the rotational period of the star is of

paramount importance for the correction of activity-induced
signals. To understand the disagreement between the K2 light

Table 1
HARPS-N Radial Velocity Measurements

BJDTDB RV sRV BIS FWHM SHK sSHK aH s aH
(day) (m s−1) (m s−1) (m s−1) (km s−1) (dex) (dex) (dex) (dex)

2457972.6416 −3379.6 2.3 44.1 6.955 0.964 0.019 0.2938 0.0010
2457989.5731 −3383.9 3.9 51.0 6.951 0.951 0.037 0.2901 0.0018
2457991.5524 −3373.2 4.7 33.5 6.918 0.959 0.048 0.2876 0.0012

(This table is available in its entirety in machine-readable form.)

Table 2
Astrophysical Parameters of the Star

Parameter Value Unit

EPIC number 246393474
2MASS alias J23233996-0111215
aJ2000 23:23:39.97 hms
dJ2000 −01:11:21.39 dms

R 0.681±0.018 R

M 0.708±0.028 M

r 2.244±0.161 r
 ( )L Llog −0.75±0.04 L

Teff 4599±79 K
log g -

+4.62 0.03
0.02 L

[ ]Fe H - -
+0.06 0.10

0.08 L
distance 61±2 pc
AV -

+0.14 0.10
0.14 mag

age -
+6.3 4.7

6.6 Gy
¢Rlog HK −4.6±0.1 L

35 Available at http://www.as.utexas.edu/~chris/moog.html. 36 As implemented in https://github.com/bmorris3/interp-acf.
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curves and the activity indices we followed the recipe of Angus
et al. (2018), who suggest a Gaussian process (GP) with a
quasi-period covariance kernel function as a more reliable
method than those mentioned above to measure rotational
periods of active stars. We performed our analysis using
version 5 of PyORBIT37 (Malavolta et al. 2016), a package for
RV and activity indices analysis, with the implementation of
the GP quasi-period kernel as described in Grunblatt et al.
(2015), from which we inherit the mathematical notation,
through the george38 package (Ambikasaran et al. 2015).

As GP regression ordinarily scales with the third power
of the number of data points, to ease the analysis of the K2
data set we binned the light curve every 3–4 points, paying
attention that all the points within a bin belonged to the same
section within two transits and checking that the binning process
did not alter the overall shape of the light curve. For the
activity indices this step was not required. We obtained

= P 13.9 0.2rot day from the K2 light curve, =Prot
13.7 0.2 day from the BIS, and similar values from all the

other activity indices, thus confirming that the peak seen in the
GLS periodograms of K2 and BIS corresponds to the first
harmonic of the true rotational period. The decay timescale of
active regions λ and the coherence scale w were constrained only
in the K2 data, with l = 12.8 1.0 day and = w 0.34 0.02,
and a covariance amplitude of = h 0.0031 0.0004K2 mag.
Finally, we note that despite the high level of activity of the star, no

evident correlation is seen between the RV and the activity indices
(Figure 3), meaning that a simple linear correlation model would
likely fail in removing the activity signal from the RV
observations.

5. Planets Validation

Both planets were subjected to a validation procedure in
order to calculate the false positive probability (FPP) for each
planet. The full details of the analysis will be described in
Mayoet al. (2018). Here, we give a brief summary for the
reader’s convenience. Our validation process was conducted
with Validation of Exoplanet Signals using a Probabilistic
Algorithm, or vespa. vespa is a public package
(Morton 2015b) based on the work of Morton (2012). It
analyzes input information such as sky position, parallax,
stellar parameters, broadband photometry, light curve shape,
and contrast curves. vespa then creates a representative stellar
sample for the true positive scenario and each false positive
scenario (i.e., eclipsing binaries, background eclipsing binaries,
and hierarchical eclipsing binaries). For each scenario, the
sample is cut down to the subset of systems which reproduce
the input observations. Finally, the ratio between the number of
remaining false positive scenarios and the number of total
remaining scenarios is returned as the FPP. In our case, for each
planet we provided vespa with the equatorial coordinates, a
GAIA parallax, stellar photospheric parameters (Teff , log g,
[ ]Fe H ), J, H, and K broadband photometry from 2MASS, a
normalized light curve (with the other planet’s transits
removed), and three contrast curves extracted from one
adaptive optics image and two simultaneous speckle images
collected at the 3 m Lick Observatory telescope and using
NESSI at the 3.5 m WIYN Observatory telescope respectively
(Howell et al. 2011, Scott et al. 2018). The speckle and

Figure 2. Generalized Lomb–Scargle periodogram of the RVs, the K2 light
curve and spectroscopic activity indices. A first analysis of the K2 data and
bisector inverse span (BIS) returns a main periodicity around 7 days, which
could be mistaken as the rotational period of the star if the other activity indices
are not considered. Subsequent analysis confirmed a rotational period around
14 days.

Figure 3. Corner plot of the activity indices and RVs. The contribution of
planet b has been removed from the RVs to highlight the correlation with the
activity indices. The Pearson correlation coefficient ρ is reported only when its
p-value is lower than 10−2. FWHM, SHK and Hα are strongly correlated with
each other but only weakly with the RVs, suggesting that a more complex
model to correct for stellar activity is required.

37 Available athttps://github.com/LucaMalavolta/PyORBIT.
38 Available at https://github.com/dfm/george.
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adaptive optics images were obtained from the Exoplanet
Follow-up Observing Program (ExoFOP) for K2 website.39

After vespa calculated the probability of different scenar-
ios, we applied an additional constraint based on our RV
observations with HARPS-N. Our numerous HARPS-N
observations conclusively ruled out scenarios where the transit
signals we see are caused by an eclipsing binary on the
foreground star. We therefore reduced the probability of these
scenarios to 0. We also took into account the fact that there are
multiple transit signals detected in the direction of K2-141.
Statistically, candidates around stars hosting more than one
possible transit signal are considerably more likely to be
genuine exoplanets than those in single-candidate systems
(Latham et al. 2011; Lissauer et al. 2012). To take this into
account, we divided both FPPs by 25 (Lissauer et al. 2012, see
also Sinukoff et al. 2016 and Vanderburg et al. 2016a who
estimated this factor for K2 candidates.). After including these
constraints and factors, we calculated false positive probabil-
ities of FPP<10−4 for planet b, and FPP=4.8×10−4 for
planet c. These FPPs are low enough that we consider planet c
to be statistically validated, while we consider planet b to be
confirmed by our detection of its spectroscopic orbit with
HARPS-N.

6. Photometric Analysis

After we had identified the two candidate signals, we
reprocessed the K2 light curve by simultaneously fitting for the
K2 flat field systematics, transit light curves, and stellar
variability using the procedure described by Vanderburg et al.
(2016b). The final light curve is shown in Figure 4.

We modeled the normalized light curve using the batman
transit model (Kreidberg 2015). We assumed the planets were
non-interacting with zero-eccentricity orbits. We also
accounted for the long cadence integration by including an
exposure time of 1764.944 s in the model (Kipping 2010; Swift
et al. 2015). The model included a baseline flux offset
parameter, a noise parameter (as the Vanderburg & Johnson
2014 reduction method does not produce flux uncertainties),
and two quadratic limb-darkening parameters (Kipping 2013).
Further, each of the two planets was modeled with five
parameters: the epoch (i.e., time of first transit), period,
inclination, planetary to stellar radius ratio (Rp/ R ), and
semimajor axis normalized to the stellar radius (a/ R ).
Parameters and their uncertainties were estimated using a
Markov chain Monte Carlo (MCMC) algorithm with an affine
invariant ensemble sampler (Goodman & Weare 2010). We
implemented the simulation via the emcee Python package
(Foreman-Mackey et al. 2013) and ran it with a 28 chain
ensemble (twice the number of model parameters). Our model
parameters and uncertainties were estimated upon convergence,
which we defined as the point in the MCMC simulation when
the scale-reduction factor (Gelman & Rubin 1992) was <1.1
for all parameters. The simulation assumed a uniform prior for
all parameters except Rp/ R , for which we applied a log-
uniform prior. We also calculated stellar density at each
simulation step (by using period and a/ R to solve for density
with Kepler’s third law) and applied a prior penalty by
comparing it to our estimate of spectroscopic density and its
uncertainties (2.244± 0.161 r).

The confidence intervals of the posteriors of the fitted
parameters are reported in Table 3. The posterior distribution of
the inclination of planet b is peaked at 90°, hence we reported
the 84.135th percentile of the distribution from the peak as the
lower limit on the inclination of the inner planet. The
inclinations of the two planets are consistent with the two
orbits being co-planar, although their posterior distributions
peak at different values. The planet radii have been obtained
using the stellar parameters in Section 3.

7. Secondary Eclipse and Phase Curve of K2-141b

We modeled the secondary eclipses and phase variations of
K2-141b using the spiderman code (Louden & Kreidberg
2017). We used the primary transit parameters from Table 3
and the stellar Teff from Table 2, with their uncertainties
propagated. To account for the long exposure times we
oversampled the time series by a factor of 11 and then binned
these values to get the final model points. The best-fitting
parameters with their confidence intervals were obtained with
an MCMC analysis using emcee (Foreman-Mackey
et al. 2013, described in the previous section). For each model
we considered, we ran a 30 walker ensemble for 100,000 steps
and checked for convergence, discarding the first 10,000 steps
as burn-in.
As the planet is so heavily irradiated, it is likely to possess an

observable thermal flux in the visual, as well as a reflected light
component. We first tested the plausibility of these two models
independently, and then combined them.
For the reflection model, we assumed that the planet reflects

light uniformly as a Lambertian sphere, which translates to a
geometric albedo in the Kepler bandpass. Since spiderman
models the phase curve and secondary eclipse simultaneously,
the geometric albedo is the only additional model parameter
over the primary transit model in the previous section. We
measured an occultation depth of 23±4ppm, meaning the
secondary eclipse and phase signal are confidently detected at
over 5σ significance. The posterior for the geometric albedo
has a mode and 68% Highest Posterior Density (HPD)40

interval of 0.30±0.06. Such a high geometric albedo implies
a relatively reflective atmosphere or surface, which would seem
to be at odds with such a dense object orbiting so close to its
star. The phase-folded data and the best-fitting reflection model
are shown in Figure 5.
For the thermal model, we used the simple physical model

described in Kreidberg & Loeb (2016), as implemented in
spiderman. The free parameters of this model are the
planetary Bond albedo, and a day-to-night heat redistribution
parameter, while the incident flux on the planet (required by the
model) is obtained from the stellar and planetary parameters
from the previous sections. The mode and 68% HPD interval
for the Bond albedo is consistent with zero ( -

+0.01 0.01
0.05) with an

upper limit of 0.37 (99.7th percentile of the distribution). The
redistribution factor is also consistent with zero, with a mode
and 68% HPD interval of -

+0.02 0.02
0.05 and an upper limit of 0.23

(99.7th percentile). This indicates a sharp day-night contrast,
with a substellar surface temperature of 3000 K, or a surface
averaged dayside value of ∼2400 K.
The maximum nightside temperature achievable in this

model is 2100 K with maximum heat redistribution, which

39 https://exofop.ipac.caltech.edu/k2/

40 Defined as the shortest possible interval enclosing 68% of the poster-
ior mass.
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does not produce sufficient flux in the Kepler bandpass to be
detected. However, this cannot rule out a nightside flux of
different origin or a systematic underestimation of the total
insolation of the planet. To test whether models with nightside
flux might be preferred, we fitted the thermal model again, but

added an extra free parameter to increase the temperature of the
planet. This allows the freedom to fit a model with significant
nightside flux, but the same occultation depth. We found no
improvement to the fit, meaning there is no evidence for
significant nightside flux in the data.
The reflected light and thermal models both produce fits that

are comparable, both by eye and in terms of the dispersion of
the residuals. Statistically speaking, the former is preferred by
the Bayesian Information Criterion (D =BIC 12), the latter
having one extra degree of freedom, although the BIC alone is
not sufficient to prefer one model over the other (see for
example Raftery 1999, for a review of the problems connected
with the BIC), and a more careful model selection, possibly
with the inclusion of new data at a different wavelength, should
be performed. To assess what can be said about the relative
contributions of thermal and reflected light in the face of this
model degeneracy, we ran a final combined model fit where the
planet had both components. As there is no evidence of
nightside flux, we fixed the redistribution parameter of the
thermal model to zero; thus, these results should be seen as an
upper limit. The results of this analysis are shown in Figure 6,

Figure 4. Top panel: systematics-corrected and normalized K2 light curve (top
and bottom panel, respectively). Bottom panel: the phase-folded light curve for
planets b and c with model in red (residuals in panels below).

Table 3
Planet Parameters from K2 Light Curve and RV Fitting

Parameter K2-141b K2-141c

P [day] 0.2803244±0.0000015 7.74850±0.00022
T0 [day]

a 7744.07160±0.00022 7751.1546±0.0010
a/ R -

+2.292 0.060
0.053

-
+21.59 0.74

0.71

Rp/ R 0.02037±0.00046 -
+0.094 0.037

0.061

i [degree] >-
+ ( )86.3 82.63.6

2.7
-
+87.2 2.0

1.6

Rp [RÅ] 1.51±0.05 -
+7.0 2.8

4.6

K [m s−1]b 6.25±0.48 <3c

ed 0 0
ω [deg]d 90 90
0 [deg]b,e 182.2±0.6 238.5±0.1
Mp [MÅ]b 5.08±0.41 <7.4c

ρ [rÅ] 1.48±0.20

ρ -[ ]g cm 3 8.2±1.1

Notes.
a Expressed as BJDTDB–2450000.0 day.
b Weighted average of the three methods.
c 84.135th percentile.
d Fixed.
e Mean anomaly at the reference time =T 7779.53438245ref , i.e., the average
of K2 and HARPS-N epochs.

Figure 5. Top panel: the detrended data phase-folded on the period of planet b
with the transits of planet c removed, the data have been binned by a factor of
thirty for clarity. The size of the error bars is a model parameter and is set by
the maximum likelihood model. The 1 and 3σ credible intervals calculated
from the posterior are overplotted in dark and light orange respectively. Bottom
panel: the residuals to the best-fitting model, the binned data are plotted as thick
blue lines and the unbinned data is plotted as thin gray lines. All model fits
were performed on the unbinned data.

Figure 6. The best-fitting visual geometric albedo as a function of the Bond
albedo. The shaded area is the 68% credible region for the geometric albedo,
calculated using slices of the MCMC posterior. The corresponding substellar
temperature for the planet is plotted on the top axis, and the fraction of the
occultation depth from the reflected light alone is calculated using the best-
fitting Bond albedo for the corresponding visual albedo.
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and show the 1σ range of mutually acceptable Bond and
geometric albedos. As the signal can be reproduced satisfacto-
rily with both pure thermal and pure reflective models, there is
naturally a near perfect degeneracy. However, future observa-
tions at longer wavelengths should distinguish more easily
between thermal and reflected light. This could set an upper
limit on the Bond albedo for the planet, which would in turn
break the degeneracy in this data set and allow a more stringent
upper limit to the geometric albedo to be set.

8. RV Analysis

The twofold observational strategy we adopted to gather the
RVs (see Section 2.2), together with the high precision of the
K2 light curve and the availability of reliable spectroscopic
activity indices (thanks to the brightness of the star) allow us to
model stellar activity with three different, complementary
techniques, thus allowing an accurate determination of the
planetary mass.

The analyses were performed assuming circular orbits for
both planets. The circularization timescale for planet b is very
short, given its short orbital period, and eccentricity excitation
due to dynamical interactions with the outer planet are unlikely
due to their separation in period, in addition to the fact that the
architectures of USP systems seem dynamically cold (Dai et al.
2017). The adopted parameters are listed in Table 3 and
correspond to the weighted average of the three techniques. In
the following, confidence intervals are calculated by taking the
15.865th and the 84.135th percentiles of the posterior
distributions, while upper limits are expressed as the
84.135th percentile of the posterior.

8.1. Nightly RV Offsets

When the periodicity of the stellar activity is well separated
from the orbital period of the planet, as in our case
( P P 50act orb ), we can assume that the RV variation due to
the activity, as well as the RV contribution from the outer
planet, are constant within an orbital period of the USP planet.
Since the nightly visibility window of our target from La Palma
was shorter than the orbital period of the planet, this approach
simply transforms into applying a nightly offset to our RV data
set. For this analysis we considered only those nights when
at least two RVs were collected, for a total of 40 RVs across
15 nights. On the night of 2017 September 14th, 9 consecutive
RVs were gathered across 5.1 hr (0.21 days), almost covering a
full orbital period.

We performed the analysis using the PyORBIT code. Global
optimization of the parameters was performed using the
differential evolution code pyDE41; the output was then fed
to emcee for a Bayesian estimation of the parameters and their
errors. We used uninformative priors for all parameters except
for the period of planet b, where we assumed a Gaussian prior
with center and standard deviation set to the value and
uncertainty obtained from the K2 light curve (Section 6). The
central time of transit was provided as input data. We used 80
walkers (four times the number of free parameters) running for
50000 steps, of which the first 20000 were discarded as burn-in
phase (although the Gelman–Rubin criterion for convergence
was already met after a few thousand steps). After applying a
thinning factor of 100 we were left with 24000 independent

samplings for each parameter. We obtained an RV semi-
amplitude of = K 6.10 0.47 m s−1, corresponding to a
planetary mass of Mp=4.96±0.39MÅ after taking into
account the uncertainty on orbital inclination and stellar mass.
The phase-folded RVs with their residuals are shown in the first
panel of Figure 7.

8.2. GPs and K2 Light Curve

The next approach assumes that light curve variations and
activity signals in the RVs can be described by a GP with
the same kernel and common hyper-parameters except for the
covariance amplitude h, which is specific for each data set. We
performed the analysis using the PyORBIT code with the same
kernel choice as described in Section 4. As shown by Grunblatt
et al. (2015) the quasi-periodic kernel is the best choice to
model photometric and RV variations while preserving a
physical interpretation of the hyper-parameters. We modeled
the K2 light curve and the RVs simultaneously, to better
understand correlations between the hyper-parameters and the
orbital parameters. We then repeated the analysis without
including the K2 light curve but using the values obtained in
Section 4 as priors on the hyper-parameters, with error bars
enlarged by a factor of three to take into account a possible
change in behavior of stellar activity during the time span
between photometric and RV data. Differently from the
previous approach, we included both planets in the model.
We ran the sampler for the same number of step as in

Section 8.1, using 68 walkers (four times the dimensionality of
the model) for a total of 20400 independent samples when
including the K2 light curve, and 56 walkers for 16800

Figure 7. Phase-folded RV fit with residuals for the three methods used in the
analysis. For this plot, we used the maximum a posteriori (MAP) parameter
estimates.

41 Available at https://github.com/hpparvi/PyDE.
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independent samples when imposing priors on the hyper-
parameters. We followed the same criteria for convergence.
The posteriors of the orbital parameters obtained in the two
cases (i.e., with the K2 light curve or imposing the priors) are
nearly indistinguishable, i.e., we are not limited by the precise
choice of the GP hyper-parameters. For planet b we obtained an
RV semi-amplitude of = K 6.34 0.49 m s−1, corresponding
to a planetary mass of Mp=5.15±0.42MÅ, while planet c
was undetected, with a posterior distribution of Kc peaked at
zero and an upper limit of <K 3.8c m s−1. When including the
K2 data we obtained the same hyper-parameters as in Section 4
and a covariance amplitude = h 11.4 2.5RV m s−1, confirm-
ing the high level of activity of the star. The GP regression and
the Keplerian contributions to the RVs are shown in the upper
panel of Figure 8. The phase-folded RVs with their residuals
for planet b are shown in the second panel of Figure 7.

8.3. GPs and Activity Indices

In a third approach, we performed a combined analysis of
RVs and activity indices using the GP framework introduced in
(Rajpaul et al. 2015, hereafter R15) and Rajpaul et al. (2016).
This framework was designed specifically to model RVs jointly
with activity diagnostics even when simultaneous photometry
is not available. It models both activity indices and activity-
induced RV variations as a physically motivated manifestation
of a single underlying GP and its derivative.

We used R15ʼs framework to derive a constraint on the
activity component of the RVs, and joint constraints on the
masses of planets b and c, independently of the approach based
on the K2 photometry. For this analysis, we modeled the SHK,
BIS, and RV measurements simultaneously. Given strong
observed linear correlations between SHK CCF contrast and
FWHM (Pearson correlation coefficients r ~ 0.8, see
Figure 3), modeling the latter two time series in addition to

SHK would have been redundant, as they would not have
provided independent constraints on activity-induced RV
variations.
We used a GP with quasi-periodic covariance kernel, as

presented in R15, to model stellar activity, while we considered
as a GP mean function either zero, one, or two non-interacting
zero-eccentricity Keplerian signals (no planets, planet b only,
and planets b and c) in the RVs only. We placed non-
informative priors on all parameters related to the activity
components of the GP framework (see R15); the priors we
placed on the Keplerian orbital elements were the same as those
in the preceding analyses.
We performed all parameter and model inference using the

MultiNest nested-sampling algorithm, with 2000live points
and a sampling efficiency of 0.3.
For planet b, we obtained a RV semi-amplitude of
= K 6.31 0.49b m s−1, corresponding to a planetary mass

of = M 5.14 0.42b MÅ (third panel of Figure 7), while
planet c was again undetected but with a lower value on the
upper limit for its RV semi-amplitude, <K 1.9c m s−1.
We obtained GP hyper-parameters of = P 12.8 0.5GP day

(overall period for the activity signal), l = -
+1.1p 0.1

0.2 (inverse
harmonic complexity, with this inferred value suggesting an
activity signal with harmonic content only moderately higher
than a sinusoid), and -

+16 5
7 day (activity signal evolution

timescale). For the other hyper-parameters we obtained
= -

+V 66r 13
17 m s−1 and = - -

+V 7.8c 6.5
5.3 m s−1 for the RVs,

= -
+L 0.117c 0.026

0.033 for the SHK index, = -
+B 30r 8

11 m s−1 and
= - -

+B 46c 13
10 m s−1 for the BIS. The best-fit model is

represented in the bottom panel of Figure 8. Note that these
parameters should not be compared directly with those reported
in Sections 4 and 8.2, as they are inferred based on fitting a
combination of a quasi-periodic GP and its derivative to the
RVs and multiple activity indices, while in the previous
approach only the GP (without its derivative) is considered.

8.4. Effects of Time Integration

For USP planets, the variation of the RV curve during the
time of one integration may become relevant. In our case, the
exposure time of 1800 seconds (chosen to reach a good
precision in RV) covers 8% of the RV curve of the inner planet.
While this problem is not new in the exoplanet literature (e.g.,
in the analysis of the Rossiter–McLaughlin effect, Covino et al.
2013), it has never been addressed when dealing with RV fits for
planet mass measurement. We proceeded as follows to estimate
the systematic error in the semi-amplitude of planet b due to
integration time: we computed a theoretical RV curve given the
orbital parameters of the planet using a sampling of 180 s, then
we binned this curve over ten points (corresponding to our
integration time) and we measured the semi-amplitude Kobs of
the resulting curve. By varying the input Ktrue we found that the
D = -K K Ktrue obs, i.e., the correction to be applied to the
observed semi-amplitude to recover the true value, is a linear
function of Kobs with slope ´ -9.07 10 3 and null intercept. This
suggests that the values of the semi-amplitude obtained by
our fits are systematically underestimated by 0.05 m s−1, i.e.,
well below the precision to which we can determine K. In
a conceptually similar case involving a white dwarf orbiting
a brown dwarf in a 91 minutes orbit, Rappaport et al. (2017)
computed analytically the correction factor to be applied to an
RV at a given epoch to take into account the finite exposure time
(Equation (2) of their paper). By applying their equation, we

Figure 8. Comparison of the combined stellar activity and planetary models
obtained when using GP constrained by the K2 light curve (upper panel) or the
activity indices (lower panel). The blue curve represents the Keplerian
contribute (using the MAP parameters), the black curve with the gray shaded
area represents the GP regression with its 1σ confidence interval.

9

The Astronomical Journal, 155:107 (13pp), 2018 March Malavolta et al.



obtain that the measured semi-amplitude is underestimated by a
factor of 0.99 (∼0.06m s−1) with respect to the true value, in
agreement with our previous estimate.

8.5. The Mass of Planet c

A commonly encountered concern regarding GPs is that they
may be flexible enough to wrongly “absorb” a planetary signal
as stellar activity, resulting in a non-detection as in our case.
Our GP-based methods are able to disentangle stellar signals
from planetary ones even in cases where their periods are
identical (see, e.g., Mortier et al. 2016), given that the latter
would not in general have coherent phase and constant shape
and amplitude over multiple stellar rotation periods. The GP
component of the model is associated with a much higher
complexity penalty than any Keplerian components, so the
latter would be preferred regardless of the time span covered by
the observations. In our case, the orbital period of planet c is
close (but not identical) to the first harmonic of the rotational
period of the star, so the previous considerations should remain
valid. Nevertheless, we verified that with our tools we were
always able to correctly retrieve injected RV signals with
period and phase corresponding to planet c for several values of
the semi-amplitude in the range between 1 and 20 m s−1. This
test also confirmed that our detection limit is not biased by the
sampling of the observations.

In the previous section, we carried out the RV analyses with
a 2-planet model, motivated by the fact that we identified two
planets in the K2 light curve, and we confirmed that the semi-
amplitude of planet c is consistent with zero using two
complementary approaches to model stellar activity. The
choice of the model can, however, strongly affect the outcome
of the analysis (see Rajpaul et al. 2017, for a recent example);
for example, the inferred parameters for planet b might be
biased by the presence of a spurious second Keplerian term in
the model, if indeed there is no detectable RV signal for planet c.
We repeated the analyses by including only planet b in the
model, and obtained posterior distributions for the orbital
parameters and the GP hyper-parameters compatible with those
of the 2-planet model, well within the 1σ error bars. For the
GP + activity indices we also computed log model likelihoods
(evidences) of  = - ln 4.2 0.10 ,  = ln 33.3 0.11 and
 = ln 33.8 0.12 for the 0-, 1- and 2-planet models,

respectively. On this basis we concluded that the model
corresponding to an RV detection of planet b was favored
decisively over a zero-planet model, with a Bayes factor of
   101 0

16. The Bayes factor   ~ 1.52 1 , however,
indicated that there was no evidence to favor the more complex
2-planet model over the simpler 1-planet model.42

From our data, then, we are not able to recover the RV semi-
amplitude of the outer planet. Our two GP-based modeling
approaches yield different upper limits on the semi-amplitude
of planet c, <+K 3.9K

c
GP 2 m s−1 versus <+K 1.9c

GP act m s−1,
possibly due in part to the different stellar rotational periods
inferred by the two approaches, = +P 13.9 0.2K

rot
GP 2 day

versus = +P 12.8 0.5rot
GP act day, with the former being closer

to twice the orbital period of the outer planet. It should be noted
that the former rotational period is mainly driven by the K2

photometry, which is more sensitive to the presence of
starspots, while the latter is influenced by the SHK index,
which probes the stellar chromosphere and is thus more
sensitive to the suppression of granular blueshift in magnetized
regions of the star, as noted by Haywood et al. (2016). The
apparent discrepancy between the two measurements is likely
due to the fact that we are sensing different physical effects.
From the posterior distribution of the semi-amplitude obtained
in Section 8.3, we can safely assume an upper limit for the RV
signal induced by planet c of =K 3c m s−1 (average of the
upper limits obtained with two techniques), which translates
into an upper limit on the mass of 7.4 MÅ.

9. Discussion and Conclusions

We presented the validation and high-precision RV follow-
up of two transiting planets discovered in the K2 light curve of
the very active star K2-141. The innermost planet has a period
of 0.28 days and falls into the category of so-called USP
planets.
We applied three independent but complementary

approaches in an attempt to minimize the effects of our
assumptions when modeling the stellar activity signals.
Namely, we used the nightly offsets to remove all of the
signals with timescale larger than the period of the inner planet;
a GP approach where the values of the hyper-parameters are
mostly driven by (non-simultaneous) high-precision photo-
metry; and a GP approach where the simultaneous activity
indices are modeled with the same underlying model for the
stellar activity in the RVs, without relying on photometry.
Figure 9 shows the lack of correlation of activity indices with
the RVs after removing only the activity, i.e., there is no
correlation between the planetary signals and the activity
indices. Notably, the three complementary methods all yielded
the same conclusions, resulting in a mass measurement for the
innermost planet that is not only precise but also robust. The
nightly offset approach resulted in a slightly smaller semi-
amplitude of planet b ( = K 6.1 0.5b m s−1) with respect to
the GP approaches ( = K 6.3 0.5b m s−1), well within the
error bars. K2-141b is thus confirmed at over 12σ confidence.
We measured a radius of = R 1.51 0.05b RÅ from K2 light
curve and a mass of = M 5.1 0.4b MÅ from HARPS-N
spectra, resulting in a density of r = 1.48 0.20b rÅ=
8.2±1.1 -g cm 3.
K2-141b joins the small sample of USP planets with

precisely known masses and radii, shown in Figure 10: 55
Cnc e (McArthur et al. 2004; Demory et al. 2011, 2016; Winn
et al. 2011; Nelson et al. 2014), CoRoT-7b (Léger et al. 2009;
Queloz et al. 2009; Haywood et al. 2014), WASP-47e (Becker
et al. 2015; Dai et al. 2015; Sinukoff et al. 2017b; Vanderburg
et al. 2017), Kepler-78b (Howard et al. 2013; Pepe et al. 2013;
Sanchis-Ojeda et al. 2013; Hatzes 2014; Grunblatt et al. 2015),
Kepler-10b (Batalha et al. 2011; Dumusque et al. 2014; Weiss
et al. 2016; Rajpaul et al. 2017), K2-131b (Dai et al. 2017), HD
3167b (Vanderburg et al. 2016a; Christiansen et al. 2017;
Gandolfi et al. 2017, respectively labeled as C17 and G17 in
the plot), K2-106b (Guenther et al. 2017; Sinukoff et al. 2017a,
G17 and S17 respectively). Notably, the last two planets have
two independent density measurements that are not consistent
with each other, resulting in a disagreement in the interpretation
of the internal composition. The density of K2-141b is
consistent with a rocky terrestrial compositions, i.e., mainly
silicates and iron, most probably with a large iron core between

42 We also considered non-circular orbits for planet c, but again this led to a
non-detection. Moreover, the posterior distribution for the eccentricity was
compatible with zero, with the simpler circular model being favored with a
Bayes factor >10.
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30% and 50% of the total mass. From our density estimate,
we can exclude the presence of a thick envelope of volatiles or
H/He on the surface of the planet.

We detected and analyzed the secondary eclipse and phase
curve variation of planet b. The data is compatible with either a
thermal emission of 3000K from the dayside and an upper
limit of 0.37 (99.7th percentile) on the Bond albedo, or a planet
with geometric albedo of 0.30±0.6. The Kepler bandpass
does not allow us to distinguish between the two models, with
the truth characteristics of the planet probably lying between
the two models. Infrared observations with the Hubble Space

Telescope and the forthcoming James Webb Space Telescope
will be able to refine the Bond albedo and thus constrain the
geometric albedo of the planet.
The second planet has a period of around 7.75 days, and as

its transits are grazing, its radius cannot be measured precisely
( = -

+R 7.0p 2.8
4.6 RÅ). The mass of K2-141c is also not measured

precisely because the planet’s orbital period is close to the first
harmonic of the rotational period of the star and/or because its
RV signal may simply be too small to detect. From our data set,
we were only able to put an upper limit on the planet’s mass of
8 MÅ (84.135th percentile of the distribution). Due to the

Figure 9. Activity indices vs. radial velocity, after removing the contribution of activity from the latter. We used the same limits as Figure 3.

Figure 10. Mass–radius diagram for the known USP planets, color-coded according to their incident flux. Gray points represent planets with period longer than one
day and mass measurement more precise than 30%.
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weak constraints on the mass and radius of planet c, we are not
able to shed much light on its likely composition, but our mass
limit suggests that the planet is more likely a mini-Neptune or a
Neptune-like planet with a thick envelope than a rocky planet
or a Hot Jupiter. The discovery of a second planet in a grazing
configuration, initially missed by automatic pipelines, corro-
borates the previously observed trend that USP planets are often
found in multi-planet systems (Sanchis-Ojeda et al. 2014).
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