

Telescopio Nazionale Galileo

LRS: Acquisition system (setting and test)

Draft document version 1.0 TNG-TS-LRS-0003

Date: 27-03-2020

Prepared by: Rosario Cosentino

Change Record

Ī	Issue/	Date	Section/Page affected	Reason/Remarks
	Rev.			
Ī	1.0	27/03/2020		
ľ				
ľ				
ľ				

Contents

1.	Intro	duction	చ
1.1	1 Sco	ppe	3
1.2		ditional information	
1.3	3 Co	ontact information	3
1.	4 I	Reference documents	3
2.	The e	e2v 4240 CCD	3
3.	The I	Programmed Waveforms	8
3.1	1 Th	e Waveform of the Skytech controller (WEditor)	8
3.2		e Waveform of the ARC controller (Assembler)	
4.	Test	of the Waveform with the oscilloscope	12
4.1	l Sky	ytech controller with the clock board	12
4.2	2 AR	C controller with the test board	13
4.3	3 AR	C controller on the CCD board	16
	4.3.1	Signal Measurement	16
4.4	4 CC	D acquisition	17
	4.4.1	Engineering CCD at room temperature	17
	4.4.2	Engineering CCD cooled (TBD)	19
	4.4.3	Scientific CCD cooled	19
1.	Appe	ndix A – Document identification code	20
2.	Appe	endix C – Project Element Code (to be completed)	22
3.		endix D – List of Acronyms (Example)	

1. Introduction

1.1 **Scope**

This document is intended to describe the migration between one CCD acquisition system to another. The original system works from the year 2000 and is well integrated in the TNG Instrument control system, the new will be based on the ARC controller and a new acquisition software system.

At the beginning of this document, we will compare the different methods used by the two CCD controller to manage the scan and reading. We will describe the existing CCD waveforms, written with the waveform editor (skytech controller), the waveforms programmed with the assembler code (ARC controller) and the theoretical waveforms provided by e2v.

Following we will illustrate the electronic tests on the clock sequences and the test on the CCD detector.

1.2 Additional information

No additional information, at the moment.

1.3 **Contact information**

Feedback on this document is encouraged. Please email to cosentino@tng.iac.es

1.4 Reference documents

[RD01] CCD42-40 NIMO Back illuminated High Performances CCD Sensor Datasheet

[RD02] LRS: Implementation of ARC controller

[RD03] LRS – Software Requirements Specification

2. The e2v 4240 CCD

In this paragraph are introduced some information about the e2v CCD 4240, that has be used for the programming/generation of the waveform sequences. More information and the characteristic of the e2v 4240 CCD can be found in [RD01].

DEVICE SCHEMATIC 24 23 22 21 20 19 18 17 16 15 14 13 8006 SS RØ2R RØ1R RØ3 RØ1L RØ2L IØ2 IØ1 IØ3 SW ØR SS 2048 (H) × 2052 (V) PIXELS 13.5 μm SOUARE 50 BLANK ELEMENTS

7 DG

8 9 10 11 RDR ODR OSR OG2

Figure 1 - Device Schematic

1 SS 2 3 4 5 6 OG1 OSL ODL RDL DD

Table 1 - CCD Voltages

CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

			CLOCK		OCK HIGH		MAXIMUM RATINGS
PIN	REF	DESCRIPTION	Typical	Min	Typical	Max	with respect to V_{SS}
1	SS	Substrate	n/a	0	9	10	-
2	OG1	Output gate 1	n/a	2	3	4	±20 V
3	OSL	Output transistor source (left)	n/a		see note 9		-0.3 to +25 V
4	ODL	Output drain (left)	n/a	27	29	31	-0.3 to +25 V
5	RDL	Reset drain (left)	n/a	15	17	19	-0.3 to +25 V
6	DD	Dump drain	n/a	22	24	26	-0.3 to +25 V
7	DG	Dump gate (see note 10)	0	-	12	15	±20 V
8	RDR	Reset drain (right)	n/a	15	17	19	-0.3 to +25 V
9	ODR	Output drain (right)	n/a	27	29	31	-0.3 to +25 V
10	OSR	Output transistor source (right)	n/a		see note 9		-0.3 to +25 V
11	OG2	Output gate 2 (see note 11)	4	16	20	24	±20 V
12	SS	Substrate	n/a	0	9	10	-
13	SS	Substrate	n/a	0	9	10	-
14	ØR	Reset gate	0	8	12	15	±20 V
15	SW	Summing well		(Clock as RQ	73	±20 V
16	IØ3	Image area clock, phase 3	0	8	10	15	±20 V
17	IØ1	Image area clock, phase 1	0	8	10	15	±20 V
18	IØ2	Image area clock, phase 2	0	8	10	15	±20 V
19	RØ2L	Register clock phase 2 (left)	1	8	11	15	±20 V
20	RØ1L	Register clock phase 1 (left)	1	8	11	15	±20 V
21	RØ3	Register clock phase 3	1	8	11	15	±20 V
22	RØ1R	Register clock phase 1 (right)	1	8	11	15	±20 V
23	RØ2R	Register clock phase 2 (right)	1	8	11	15	±20 V
24	SS	Substrate	n/a	0	9	10	-

If all voltages are set to the typical values, operation at or close to specification should be obtained. Some adjustment within the range specified may be required to optimize performance. Refer to the specific device test data if possible.

Maximum voltages between pairs of pins:

pin 3 (OSL) to pin 4 (ODL) +15 V

pin 9 (ODR) to pin 10 (OSR) +15 V

Maximum output transistor current . . 10 mA

NOTES

- 9. Not critical; OS = 3 to 5 V below OD typically. Connect to ground using a 3 to 5 mA current source or appropriate load resistor (typically 5 to 10 kO).
 - 10. This gate is normally low. It should be pulsed high for charge dump.
- 11.0G2 = 0G1 + 1 V for operation of the output in high responsivity, low noise mode. For operation at low responsivity, high signal, 0G2 should be set high.
- 12. With the R1 connections shown, the device will operate through both outputs simultaneously. In order to operate from the left output only, R11(R) and R12(R) should be reversed.

DETAIL OF LINE TRANSFER (Not to scale)

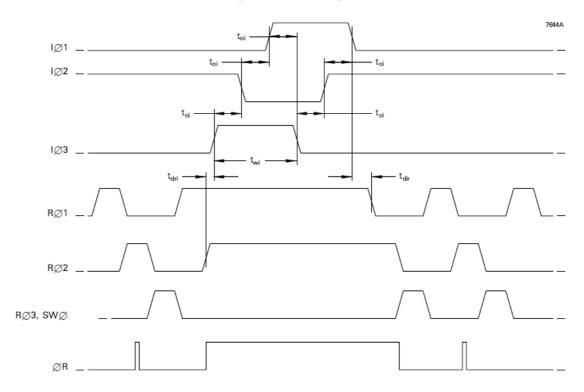


Figure 2 - Line Transfer

DETAIL OF VERTICAL LINE TRANSFER (Single line dump)

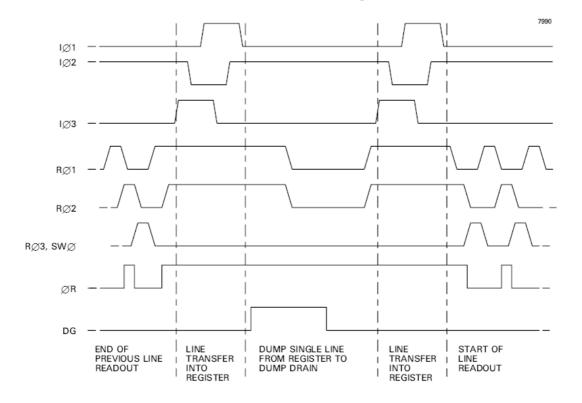
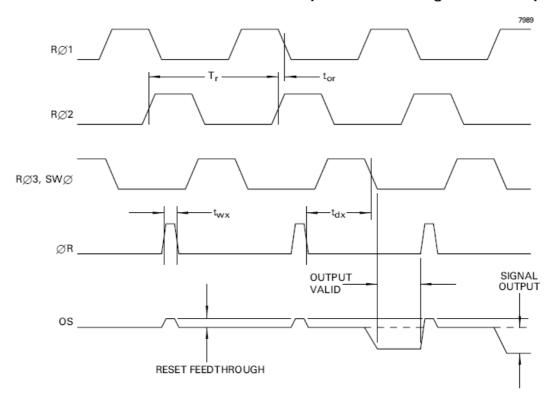



Figure 3 - Vertical Line Transfer

DETAIL OF OUTPUT CLOCKING (Operation through both outputs)

Figure 4 - Output Clocking (both output)

Table 2 - Clocking Timing

CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
T _i	Image clock period	10	20	see note 13	μs
t _{wi}	Image clock pulse width	5	10	see note 13	μѕ
t _{ri}	Image clock pulse rise time (10 to 90%)	1	2	0.2T _i	μѕ
t _{fi}	Image clock pulse fall time (10 to 90%)	t _{ri}	t _{ri}	0.2T _i	μs
toi	Image clock pulse overlap	$(t_{ri} + t_{fi})/2$	2	0.2T _i	μs
t _{dir}	Delay time, I∅ stop to R∅ start	3	5	see note 13	μs
t _{dri}	Delay time, R∅ stop to I∅ start	1	2	see note 13	μs
T _r	Output register clock cycle period	300	see note 14	see note 13	ns
t _{rr}	Clock pulse rise time (10 to 90%)	50	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
tor	Clock pulse overlap	20	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	30	0.1T _r	0.3T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	20	0.5t _{rr}	0.1T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	30	0.5T _r	0.8T _r	ns

OUTPUT CIRCUIT

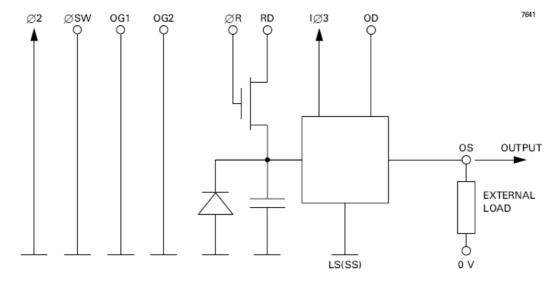
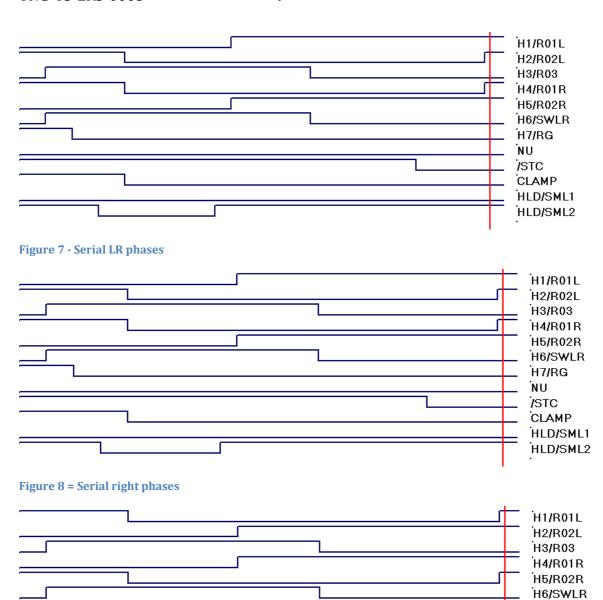


Figure 5 - Output Circuit

3. The Programmed Waveforms

The LRS CCD was used for a long time with the Skytech controller, and the waveforms was optimized to maximize the detector performances. The new ARC controller is provided with a template code, in assemble language, that has to be adapted to the CCD in use.


In this chapter are shown the different implementation of the waveform for both the acquisition systems.

3.1 The Waveform of the Skytech controller (WEditor)

The waveform shown in this paragraph was be used in the implementation of skytech CCD controller for LRS and was be programmed by using the Waveform Editor Program.

Figure 6 - Vertical phases (WE)

H7/RG NU /STC CLAMP HLD/SML1 HLD/SML2

Figure 9 - Serial Right phases

3.2 The Waveform of the ARC controller (Assembler)

The waveforms for the ARC controller are generated by an assembler code and uses the Motorola 56000 DSP. An example of this code of the sequences for the readout in LR mode is shown in the following figures.

```
; Parallel clocking UP by one line
PARALLEL UP
  DC
        END_PARALLEL_UP-PARALLEL_UP-1
  DC
  CLK2+RG+H1L+H1R+H2L+H2R+00+000+000+00
  DC
        VIDEO+%0011000
  DC
        CLK3+P DELAY+I1+I2+00+00
  DC
        CLK3+P_DELAY+I1+00+00+00
  DC
        CLK3+P_DELAY+I1+00+I3+00
  DC
        CLK3+P_DELAY+00+00+I3+00
  DC
        CLK3+P_DELAY+00+I2+I3+00
  DC
        CLK3+P_DELAY+00+I2+00+00
END_PARALLEL_UP
```

Figure 10 - Parallel clocking

_				
	SERIAL_READ_SPLIT_MED			
	DC	END_SERIAL_READ_SPLIT_MED-SERIAL_READ_SPLIT	Γ_MED-1	
	DC	CLK2+\$030000+RG+000+H2L+000+H2R+00+CLP	; Reset output node	
	DC	CLK2+\$000000+00+000+H2L+000+H2R+00+CLP		
	DC	VIDEO+\$010000+%1110100	; Reset integrator	
	SXMIT_S	SPLIT_MED		
	DC	\$00F000	; SXMIT	
	DC	VIDEO+\$000000+%0010111	; Stop reset	
	DC	VIDEO+\$040000+%0000111	; Integrate	
	DC	CLK2+\$060000+00+000+H2L+000+H2R+H3+SW+CI	LP	
	DC	CLK2+\$0C0000+00+000+000+000+000+H3+SW		
	DC	CLK2+\$010000+00+H1L+000+H1R+000+H3+SW	; Dump the charge	
	DC	VIDEO+\$000000+%0010111	; Stop Integrate	
	DC	VIDEO+\$000000+%0011011	; Change polarity	
	DC	VIDEO+\$040000+%0001011	; Integrate	
	DC	CLK2+\$060000+00+H1L+000+H1R+000+00+00		
	DC	CLK2+\$060000+00+H1L+000+H1R+000+00+00		
	DC	CLK2+\$070000+00+H1L+H2L+H1R+H2R+00+00		
	DC	VIDEO+\$000000+%0011011	; Stop Integrate	
	END_SE	RIAL_READ_SPLIT_MED		
-1				

Figure 11 - Serial readout clocking (LR-Medium speed)

More readout more are implemented in the assembler code (Table 3) [RD03].

Table 3 - Readout modes implemented in the assembler code

Section Name	Mode	Speed	Microsec/pixel
SERIAL_READ_LEFT_SLOW	LEFT	SLOW	10
SERIAL_READ_LEFT_MED	LEFT	MED	2.5
SERIAL_READ_LEFT_FAST	LEFT	FAST	1
SERIAL_READ_RIGHT_SLOW	RIGHT	SLOW	10
SERIAL_READ_RIGHT_MED	RIGHT	MED	2.5
SERIAL_READ_RIGHT_FAST	RIGHT	FAST	1
SERIAL_READ_SPLIT_SLOW	SPLIT	SLOW	10
SERIAL_READ_SPLIT_MED	SPLIT	MED	2.5
SERIAL_READ_SPLIT_FAST	SPLIT	FAST	1

4. Test of the Waveform with the oscilloscope

To optimize the noise level of the clocks and minimize the crosstalk, the approach was the measurement of the signals in different point of the electronic chain and with different implementation (controller, clock board, cables). In the following paragraph will be described the configurations used and the results obtained.

4.1 Skytech controller with the clock board

In this test the configuration is:

- CCD controller Skytech
- Original TNG clock cables
- Clock board

To simplify the analysis of the results we considered the readout mode that read the CCD from both output. More details about the others readout mode will be added at the end of this document in the appendix ...

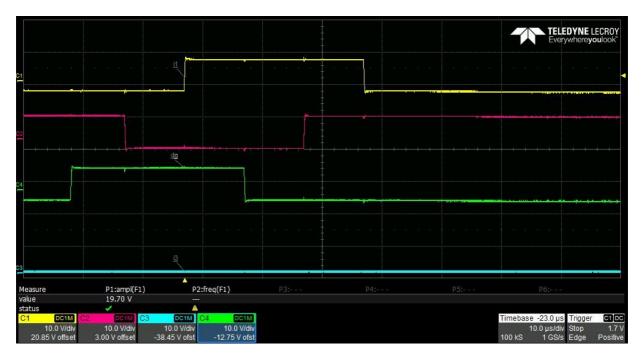


Figure 12 - Vertical waveforms

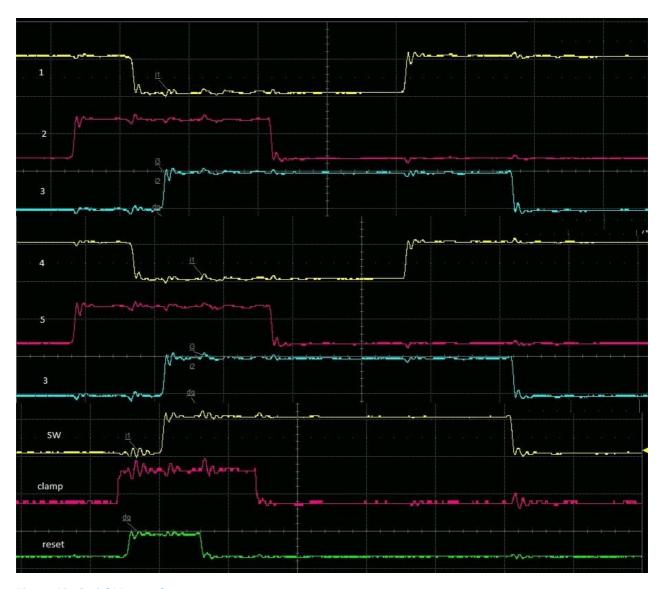


Figure 13 - Serial LR waveforms

4.2 ARC controller with the test board

In this test the configuration is:

- CCD controller ARC
- Test board

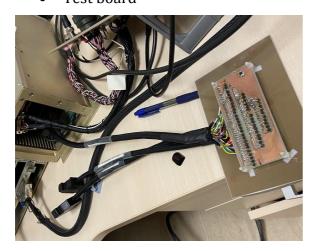


Figure 14 - ARC controller and Test Board

In this test we used the "E2VLRS.waveforms" assembler code. This version of DSP assembler code is described in [RD03].

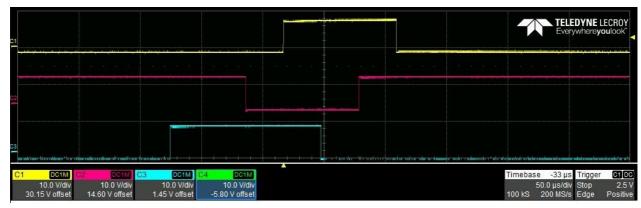


Figure 15 - Vertical waveforms

The serial RL waveforms has been analysed in different speed mode, to verify the degrading of the waveforms, depending on the speed. In the Fast-Mode test (Figure 16) a 'simulated' integration signal wad added to have an idea of the processing operations.

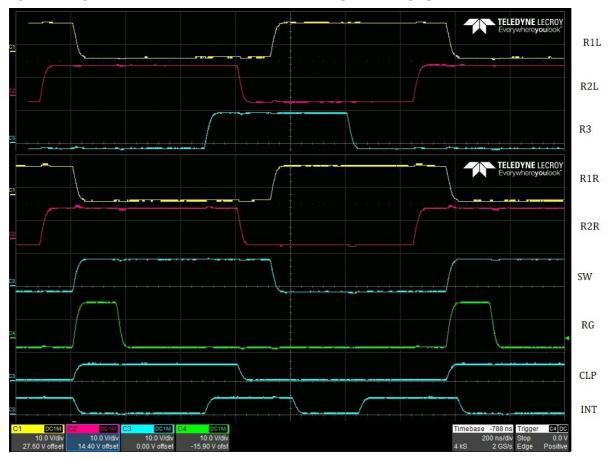


Figure 16 - Serial LR-FAST waveforms

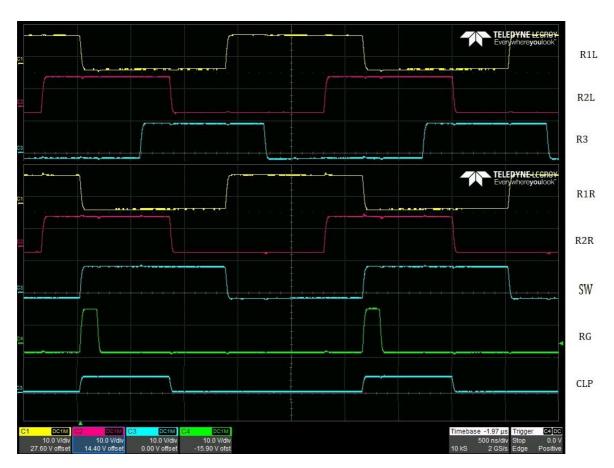


Figure 17 - Serial LR-Medium waveforms (to be optimized)

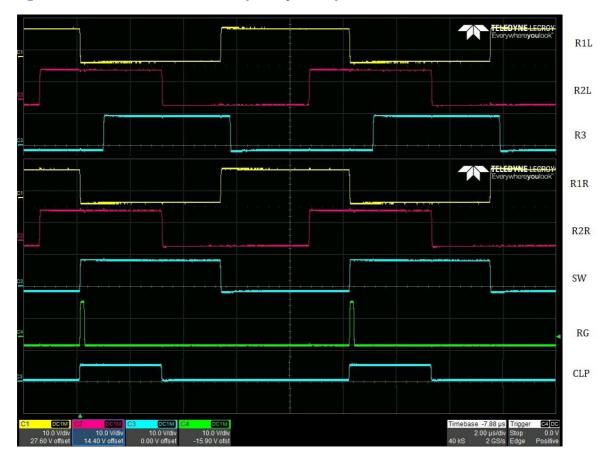


Figure 18 - Serial LR-Slow waveforms (to be optimized)

4.3 ARC controller on the CCD board

4.3.1 Signal Measurement

These tests was be done with the real configuration for the CCD readout and taking the measure in the CCD socket:

- CCD controller ARC
- New Custom clock cables (coaxial wiring)
- Video-Bias cable
- CCD Board (without CCD)

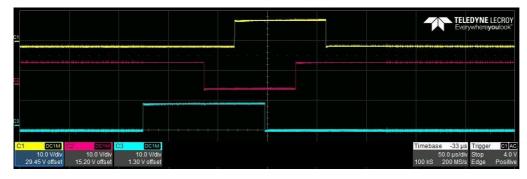


Figure 19 - Vertical Waveform

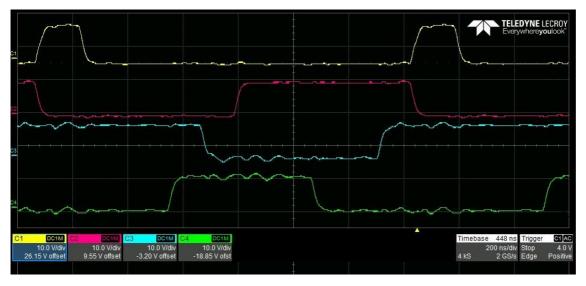


Figure 20 - Serial LR-FAST waveforms

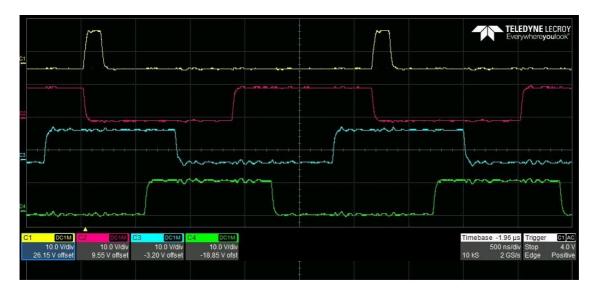


Figure 21 - Serial LR-MED waveforms

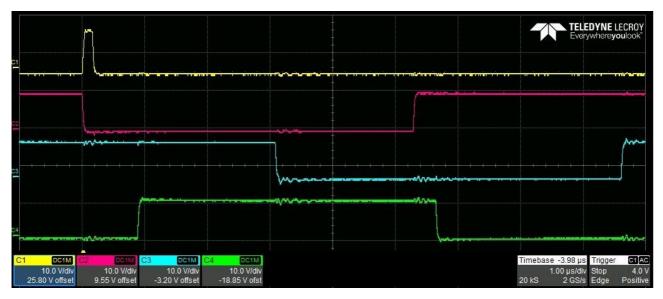


Figure 22 - Serial LR-SLOW waveforms

4.4 CCD acquisition

4.4.1 Engineering CCD at room temperature

These tests has be done with an engineering CCD and at room temperature. In this condition is possible verify if the acquisition system works, because the CCD image has to show the overscan and the dark signal. We has adjusted the video offsets to obtain the wanted value of overscan pixels and we acquired three images, one for each readout speed.

The acquired images shown that the dark signal increase in the slower read modes with a gradient trend (the SLOW mode reach to the saturation of the image).

Configuration:

- ARC controller with video-bias and Clock cables
- Preamplifier and clocks boards
- Testing bench with the ccd detector

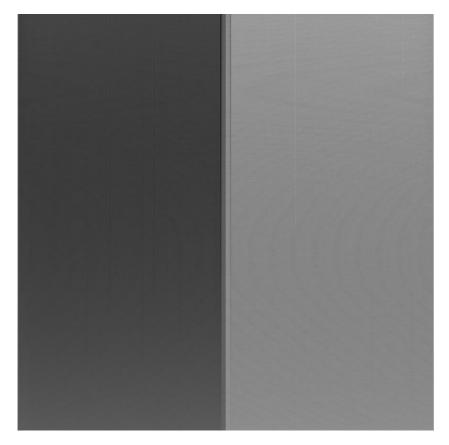


Figure 23 - CCD image at room temperature Readmode = LR-FAST

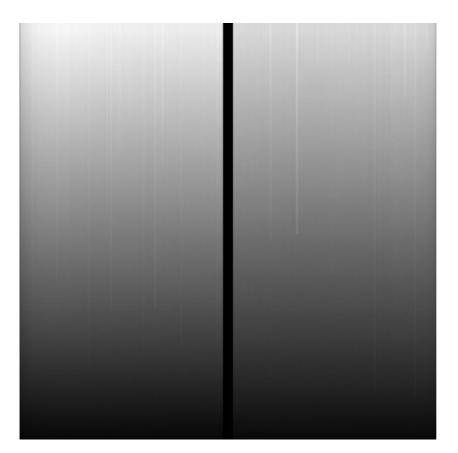


Figure 24 - CCD image at room temperature Readmode = LR-MED

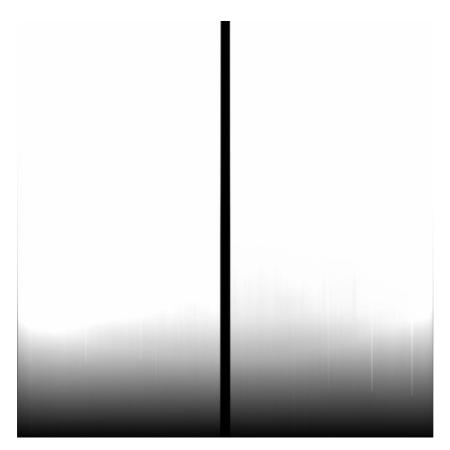


Figure 25 - CCD image at room temperature Readmode = LR-SLOW

4.4.2 Engineering CCD cooled (TBD)

In these tests, we will test the engineering CCD in the same cryogenic environment of LRS. Configuration:

- ARC controller with video-bias and Clock cables
- Preamplifier and clocks boards
- Infrared dewar and engineering CCD
- Liquid nitrogen
- Optical laboratory facilities

Tests:

- Bias acquisition and video offset settings
- Readout noise measurement
- Flat fields acquisition
- Gain measurements
- Conversion factor measurement
- Linearity measurements

4.4.3 Scientific CCD cooled

In these tests, we will redo the same test of the paragraph 4.4.2

1. Appendix A – Document identification code

ORG-TYP-INS-NCOD

ORG = Originator field (i.e. TNG)

TYP = Document Type (see Table 4)

PRJ = project element (see Table 5)

NCOD= numeric code (i.e. 0001)

Example: TNG-MAN-HAN-0001

Table 4 - Document type code

AD	Assumption Document
AN	AN Analysis
COS	Cost Documents (Estimate/CaC/CtC, etc)
DD	Design Description
DP	Data Package
DRD	Document Requirements Description/Definition
DRL	Document Requirements List
DW	Drawing/Diagram
EID	Experiment Interface Document
FI	File (Software/Configuration/Network)
ICD	Interface Control Document
IRD	Interface Requirement Document
ITT	Invitation to Tender
MAN	Manual/User Guide/Handbook
MEM	Memo
MOM	Minutes of Meeting
MOU	Agreement/Memorandum of Understanding
MX	Matrix/Compliance
NCR	Non-Conformance Report
NOT	Note
OPS	Operations Document
PLN	Plan

PO	Proposal
PRE	Progress Report/Status Report
RFQ	Request for Quotation
SOW	Statement of Work
TOR	Terms of Reference
TN	Technical Note
TP	Test Procedure/Test Plan
TR	Test Report/Test Result
TS	Test Specification
VC	Verification Control Document
WBS	Work Breakdown Structure
WP	Working Paper
WPD	Work Package Description

2. Appendix C – Project Element Code (to be completed)

Table 5 - Project element code

BTM	Batman
CCD	CCD detector/electronic/software
HAN	HARPSN
TRK	Tracking
LRS	Low Resolution Spectrograph for TNG
SRG	SARG

3. Appendix D – List of Acronyms (Example)

BOM Bill Of Material

CCD Charge Coupled Device

CDS Correlated Double Sampling

INAF Istituto Nazionale di AstroFisica

INFN Istituto Nazionale di Fisica Nucleare

TBC To Be Confirmed

TBD To Be defined

TBF To be fixed

TNG Telescopio Nazionale Galileo