

Telescopio Nazionale Galileo

Specification to Use the DLL to communicate with the CCD controller

24/4/2006 - Version 1.0

21/6/2006 - Version 1.1 (DLL ver. 3.61)

30/6/2006 – Version 1.2 (DLL ver. 3.91)

17/8/2006 – Version 1.3 (DLL ver. 3.91) – scan sequences with binning ADDED

Written by:

Rosario Cosentino

Specification to Use the DLL to communicate with the CCD controller

To use the DLL with the hardware of the TNG the files CTRL_PROCEDURES.H and

CTRL_PROCEDURES.lib had to be included in the project.

To compile correctly the visual C code with the TNG hardware the following variable must be

defined:

#define PCI_A100_1_00

#define SPC_A100

#define CDS_A100

All the commands return an integer that contain the error code. The list of error codes is showed in

appendix A.

Booting of the system

The first step to control the CCD electronic is the boot of the PCI, the SPC and the CDS boards.

The booting sequence is the following.

int = Boot_Kernel_PCI_A100(char *file_boot)

Where file_boot is the name of the bynary file for the DSP (.HEX files).

Int = Init_SPC_A100_by_PCI_A100(void);

 Boot the SPC board
Int = Init_CDS_A100_by_PCI_A100(void);

 Boot the CDS board

Commands to read the low level software configuration

There are a series of command to interrogate the system about the low level configuration software.
int Get_DLL_Release(char *release, int max_chars)

 read the DLL release installed in the operative system

int Get_DLL_Model(char *release, int max_chars)

 read the DLL model installed in the operative system

int Get_Driver_Release_CTR_S000(char *release, int max_chars, unsigned int &Ret_Code)

 read the driver release installed in the operative system

int Get_Firmware_Release_PCI_A100(char *release, int max_chars)

 read the firmware release installed in PCI board

int Get_Firmware_Model_PCI_A100(char *release, int max_chars)

 the firmware model installed in PCI board

Command to program the environment of the system
These commands must be used with caution because can damage the detector. For this reason normally the

programming of most of them are done through tables. Each command is described below and next to the command

description the note caution is added for some of them.

Bias Programming (caution if the output is enabled):

Int = Bias_CDS_A100_by_PCI_A100(unsigned int Board_Addr, unsigned int Bias_Number, double Bias_Value)

Program the biases values of the CDS A100 board. This board furnishes 16 bias voltages with the ranges

showed in table 1.

The parameter of this function is:

Board_addr = the board number, 0 if only one CDS is mounted.

Bias_Number = the bias number, from 1 to 16

Bias_Value = the value of the bias (the ranges permitted are showed in table 1)

Bias Number Min Value Max value

Bias 0 - 3 +15 +30

Bias 4 – 7 +5 +15

Bias 8 - 11 -5 +5

Bias 12 - 15 -10 +10

Table 1- Bias Ranges for the CDS A100 board

Int = CCD_Voltage_Control_CDS_A100_by_PCI_A100(unsigned int Enable) (caution)

Enable the biases voltages outputs. This command must be used only when the voltages value are compatible

with the CCD bias. The value of Enable is 1 to enable, 0 to disable the biases.

Clock programming (caution)

Int = Clock_SPC_A100_by_PCI_A100(unsigned int Clock_Type,unsigned int Clock_Polarity, unsigned int

Clock_Number, double Clock_Value, double max_spc_a100_clk_val=MAX_SPC_A100_CLK_VALUE, double

min_spc_a100_clk_val=MIN_SPC_A100_CLK_VALUE)

Program the clocks voltages. There are two kinds of clocks: The horizontal and the vertical. Each kind had two

different programmable levels: the High and the Low level.

The parameters of this function are:

Clock_Type = CLOCK_TYPE_HOR or CLOCK_TYPE_VERT

 Clock_Polarity = CLOCK_POL_POS or CLOCK_POL_NEG

 Clock_Number = the number of clock, from 1 to 16

Clock_Value = the value of the clock, from 0 to +10 volts for the CLOCK_POL_POS, from 0 to -10 volts for

the CLOCK_POL_NEG

 The other parameter is fixed by the environment

Command to program the Gain values:
Int = Set_Gain_CDS_A100_by_PCI_A100(unsigned int Board_Addr,unsigned int Gain_Number);

Set the gain of the first amplification stage of the signal. The values are 0, 1 or 2

Command to program the filter values:
The command:

Int = Set_Filter_CDS_A100_by_PCI_A100(unsigned int Board_Addr,unsigned int Filter_Number)

Is substituted by the command:

Int = Set_Band_CDS_A100_by_PCI_A100(unsigned int Board_Addr,unsigned int Filter_Number)
Set the filter applied at the signal. The values are 0, 1 or 2

Command to program the input offset:
Int = Offset_Input_CDS_A100_by_PCI_A100(unsigned int Board_Addr, unsigned int Offset_Number, double

Offset_Value);

 The parameter of this function are:

 Board_Addr = the board number, 0 if only one CDS is mounted.

 Offset_Number = the value included in the range 1-4 are permitted, each one set the channel.

 Offset_Value = the value, in voltage, of the offset. The value from -5 to +5 is permitted.

Command to program the output offset:
Int = Offset_Output_CDS_A100_by_PCI_A100(unsigned int Board_Addr, unsigned int Offset_Number, double

Offset_Value);

 The parameter of this function is:

 Board_Addr = the board number, 0 if only one CDS is mounted.

 Offset_Number = the value included in the range 1-4 are permitted, each one set the channel.

 Offset_Value = the value, in voltage, of the offset. The values from -5 to +5 are permitted.

Command to set the CCD temperature:
Int = Heater_Control_SPC_A100_by_PCI_A100(bool On_Off);

 Enable/disable the temperature control.

Command to program CCD temperature:
The command:

Int Thrs_SPC_A100_by_PCI_A100(double Set_Temp)

Is substituted by the command:
Thrs_AD590_SPC_A100_by_PCI_A100(double Set_Temp m_fTempCCD)

Set the CCD temperature. The value is in Celsius degree.

Command to read telemetry:

There are two commands to read the telemetry of the CCD controller. One to read the CDS board (biases) and another

one to read the SPC board (clocks and temperature). The furnished values are stored in a structure.

CDS Telemetry:

Telemetry data structure (definition)

typedef struct _TELEM_CDS_A100_DATA {

 unsigned int n_Valid_Board;

 unsigned int n_Data_Acq;

 unsigned int n_Channel;

 unsigned int n_Sample;

 unsigned int n_Mux_Channel;

 TELEM_CDS_A100_BOARD Board[MAX_ACQ_BOARD];

} TELEM_CDS_A100_DATA, *pTELEM_CDS_A100_DATA;

Bias data structure (definition)

typedef struct _TELEM_CDS_A100_BOARD {

 double Bias[MAX_BIAS_CDS_A100];

} TELEM_CDS_A100_BOARD, *pTELEM_CDS_A100_BOARD;

int GetTlm_CDS_A100_by_PCI_A100(pTELEM_CDS_A100_DATA pTelem_Data);

 Each elements of bias telemetry can be retrieved from the structure.

 i.e. the first bias of the first CDS A100 board is:

 Telem_Data.Board[0].Bias[0];

SPC Telemetry:

Telemetry data structure (definition)

typedef struct _TELEM_SPC_A100_DATA {

 unsigned int n_Sample;

 unsigned int n_Data_Acq;

 double Clock_Hor_High[MAX_CLK_SPC_A100];

 double Clock_Hor_Low[MAX_CLK_SPC_A100];

 double Clock_Ver_High[MAX_CLK_SPC_A100];

 double Clock_Ver_Low[MAX_CLK_SPC_A100];

 double Temp[MAX_TEMP_SPC_A100];

 double V15P_Analog;

 double V15N_Analog;

} TELEM_SPC_A100_DATA, *pTELEM_SPC_A100_DATA;

int GetTlm_SPC_A100_by_PCI_A100(pTELEM_SPC_A100_DATA pTelem_Data);

 Each elements of bias telemetry can be retrieved from the structure.

 Some examples are showed below:

 Telem_Data.Clock_Hor_High[0] ---- first horizontal clock high

 Telem_Data.Clock_Ver_High[0] ---- first vertical clock high

 Telem_Data.Clock_Hor_Low[0] ---- first horizontal clock low

 Telem_Data.Clock_Ver_Low[0] ---- first vertical clock low

 Telem_Data.Temp[0] ---- first Temperature telemetry (there are 4 temperature telemetry)

Acquisition (Pci_A100.h, PCI_A100_CDS_A100_PDS_A000.h)

To acquire the image from the CCD the system needs the tables of sequences (waveform to do the CCD scan), and a

special variable that contain the microcode of the CCD scansion. This variable contains the information about the CCD

scan, i.e. how many times each sequence had to be used.

In order to make an acquisition four actions must be made:

First action: Load the waveform

Int = PCI_A100_Load_Tables (char* Path_Tables, char* List_File_Name_Tables)

 This command read a file that contain e list of sequences files to be loaded.

 Path_tables = the path where the sequences files are saved

List_File_Name_Tables = the list of sequences files to be loaded. The maximum numbers of sequences files

are 16. Depending by the order in the table, the system assigns a number (from 1 to 16) at the table.

Sequence file Number assigned

Vert.wfN

FastHoriz.wfN

Horiz.wfN

Horiz_Light.wfN

Horiz_custom.wfN

Horiz_custom1.wfN

0

1

2

3

4

.............

F

Second action: Generate and load the scan sequence for the CCD readout

Int = PCI_A100_Load_Scan_Sequence(unsigned int* Scan_Memory)

This command use the variable Scan_Memory to generate the sequences, by using the sequences files loads

previously. The variable Scan_Memory contains the microcode with the command to generate the sequences.

The sequence contained in the Scan_Memory variable depends by the CCD area, the box (or multibox) and

the type of acquisition (full frame, frame transfer).

The microcode is the following:

END_TAB 0x000000 (Command)

TAB 0x1|0|0000 (Command | Num_Tab | Repeat_Tab)

LOOP 0x2|00000 (Command | Number of Loop)

REPEAT 0x300000 (Command)

VERTICAL 0x400000 (Command)

HORIZONTAL 0x500000 (Command)

A typical scan that read a CCD 1000 X 2000, in full frame mode had the following structure:

Begin a cycle of 2000

Use the vertical table

Number of table used like vertical table (depends by the load order of the table)

Use the horizontal table

Repeat 1000 times the table indicated (depends by the load order of the table)

End the cycle

End

The values in the Scan_Memory variable are:

Value Comments

2007D0 LOOP (0x2|0007D0) (Command | Number of Loop)

400000 VERTICAL (0x400000) (Command)

100001 TAB (0x1|0|0001) (Command | Num_Tab | Repeat_Tab)

500000 HORIZONTAL (0x500000) (Command)

1103E8 TAB (0x1|1|03E8) (Command | Num_Tab | Repeat_Tab)

300000 REPEAT (0x300000) (Command)

000000 END (0x000000)

Third action: Load the wipe sequence

 The wipe sequence is very similar to the acquisition sequence and depends only by the CCD area.

 This sequence is used to clean the CCD before the exposition and normally use only the vertical waveform.

Int = PCI_A100_Load_Wipe_Sequence(unsigned int* Scan_Memory)

Forth action: Start the acquisition

Int CDS_A100_PDS_A000_Image_by_PCI_A100(double Sht_Time, unsigned int Enable_Sht, unsigned int

readout_sync, unsigned int* number_word, void * pointer_mem, unsigned int mem_size_allocated, unsigned int

= SPCA100)

Sht_Time = the exposure time

Enable_Sht = the flag that enable the open of the shutter

readout_sync = a variable used to synchronize
*
 the acquisition, the values range is from 0 to 3

number_word = number word of the image

pointer_mem = pointer of the image

mem_size_allocated = memory allocated by the image

SPCA100

*) to optimize the electronic noise this value must be chosen depending by the r.m.s. noise of a series of bias images,

acquired with different value of readout_sync.

The image obtained by the function _A100_PDS_A000_Image_by_PCI_A100 start at the memory location pointed by

pointer of the image. In the memory are stored the value of the four channels in a sequential way.

1 Board: 4 Channels (Channels wrote : 0 - 1 - 2 - 3)

// 16 BIT Array

1° Pixel Channel 1

1° Pixel Channel 0

1° Pixel Channel 3

1° Pixel Channel 2

2° Pixel Channel 1

2° Pixel Channel 0

2° Pixel Channel 3

2° Pixel Channel 2

Other commands related with the acquisition are available:

Int = Exposition_Readout_Abort_by_PCI_A100(void)
 Abort acquisition

Int = Exposition_Time_Update_by_PCI_A100(int* millisec)

 Update the exposure time

APPENDIX A – Examples of generation of wipe and scan sequences

The wipe sequence is a series of vertical scan of the whole CCD. This sequence is used by the CCD

controller to clean the CCD before the exposition. Areay is the column number of the CCD.

// Start of Generation of the wipe sequences

 index=0;

 if (areay != 0)

 {

 Scan_Memory[index] = 4194304; // 400000 vertical

 index++;

 Scan_Memory[index] = 1048576 + areay; // 100000 + temp Exe vert (split)

 index++;

 }

 Scan_Memory[index] = 0;

 index++;

// end wipe generation

To generate a scan sequence that read a box of a CCD and skip the rest of the image the C code is

the following:

areax is the image row number of the single channel image, it depends by the CCD areax, by the

number of CCD, by the number of outputs and by the binning.

areax = ((CCD_areaX * number_of_CCD) / Number_of_output_used)/BinningX

areay is the CCD column number of the single channel image, it depends by the CCD area y and by

the binning.

AreaY = CCD_areaY / Binning_Y

offsetx is the start row of the box

offsety is the start column of the box

boxx is the box dimension (row)

boxy is the box dimension (column)

Xslow is the number assigned at the sequences file that perform the Xslow scan

Yslow is the number assigned at the sequences file that perform the Yslow scan

Xfast is the number assigned at the sequences file that perform the Xfast scan

Wipe is the number assigned at the sequences file that perform the wipe scan

// Start of generation of generic scan sequence

yslow=Table_used_to_Yslow_scan;// default = 0

xfast=Table_used_to_Xfast_scan;// default = 3

wipe = Table_used_to_Wipe_scan;// default = 0

if (binx == 1)

 xslow=Table_used_to_binx1_scan; // default = 1

if (binx == 2)

 xslow=Table_used_to_binx2_scan; // default = 4

if (binx == 4)

 xslow=Table_used_to_binX4_scan; // default = 5

//

if (AcqMode1 == 0) // Full Frame

 {

 index=0;

 temporaneo = (areay - offsety - boxy) * biny;

 if (temporaneo != 0)

 {

 // start vertical skip

 Scan_Memory[index] = 4194304; // 400000 vertical

 index++;

 Scan_Memory[index] = 1048576 + temporaneo + yslow*65536;

 // 100000 + temp Exe vert (split)

 index++;

 }

 //end vertical skip

 Scan_Memory[index] = 2097152 + boxy; // Loop on the column

 index++;

 Scan_Memory[index] = 4194304; // 400000 vertical

 index++;

 Scan_Memory[index] = 1048576 + biny + yslow*65536; // do 'biny' times the vertical scan

 index++;

 Scan_Memory[index] = 5242880; // 500000 horizontal

 index++;

 if (offsetx != 0)

 {

 // start horizontal skip

 Scan_Memory[index] = 1048576 + xfast*65536 + offsetx*binx;

// 130000 (fast hor shift)

 index++;

 }

 Scan_Memory[index] = 1048576 + xslow*65536 + boxx; // 110000 (slow hor)

 index++;

 temporaneo = (areax-offsetx-boxx)*binx;

 if (temporaneo != 0)

 {

 Scan_Memory[index] = 1048576 + xfast*65536 + temporaneo;

// 130000 (fast hor shift)

 index++;

 }

 Scan_Memory[index] = 3145728; // 300000 (fine ciclo)

 index++;

 if (offsety != 0)

 {

 Scan_Memory[index] = 4194304; // 400000 (vert)

 index++;

 Scan_Memory[index] = 1048576 + yslow*65536 + offsety*biny;

// 100000 (shift vert)

 index++;

 }

 Scan_Memory[index] = 0;

 index++;

 }

APPENDIX B - Return Codes

CTR_OK 1

FILE_NOT_FOUND 2

COMUNICATION_SPC_ERROR 3

PARAMETER_INCORRECT 4

LEN_MESSAGE_LARGE 5

MEMORY_FAIL 6

DSP_BOOT_FAIL 7

DLL_FAIL 8

PCI_TX_LINK_NOT_READY 9

PCI_RX_LINK_NOT_READY 10

COM_PAR_ERR 11

PCI_BOARD_NOT_PRESENT 12

LENGHT_TABLES_ERROR 13

FILE_TABLES_ERROR 14

NO_TABLES_LOADED 15

COMUNICATION_DSP_ERROR 16

MONITOR_FULL 17

CTR_NOT_FOUND 18

USER_ABORT 19

DRIVER_FAIL 20

BUFFER_FULL 21

INCOMPLETE_DATA 22

MESSAGE_UNKNOWN 23

OPEN_PAR_PORT_FAIL 24

PAR_PORT_INVALID 25

SPC_TX_LINK_NOT_READY 26

SPC_RX_LINK_NOT_READY 27

WRITE_PCI_DSP_FIFO_TIMEOUT 28

READ_PCI_DSP_FIFO_TIMEOUT 29

READ_PCI_DSP_WRONG_DATA_NUMBER 30

READ_PCI_DSP_WRONG_CHECKSUM 31

SPC_A000_RESET_FAIL 32

COMMAND_REJECTED_DURING_READOUT 33

PENDING_PROCESS_TERMINATED_OK 34

NO_PENDING_PROCESS_FOUND 35

PROCESS_ABORTED_BY_ANOTHER 36

EXPOSITION_TIME_UPDATE_ERROR 37

SPC_A200_STATUS_READ_FAIL 38

SCAN_SEQUENCE_LENGTH_ERROR 39

TAB_OF_TAB_LENGTH_ERROR 40

EXPOSITION_STARTED 41

EXPOSITION_TERMINATE 42

EXPOSITION_ABORTED_BY_ANOTHER 43

READOUT_ABORTED_BY_ANOTHER 44

PENDING_EXPO_TERMINATED_OK 45

PENDING_READOUT_TERMINATED_OK 46

READOUT_STARTED 47

LCA_NOT_LOADED 48

EVENT_NOT_LINKED 49

NO_TAB_OF_TAB_LOADED 50

TABLES_ALREADY_LOADED 51

WRONG_DSP_RETURNED_STATUS 52

TIMEOUT_WRITING_DSP_DATA 53

TIMEOUT_READING_DSP_DATA 54

CHECKSUM_ERROR_FROM_DSP 55

DSP_RESPONSE_CHECKSUM_WRONG 56

WRONG_STRING_LENGTH 57

PROCEDURE_NOT_SUPPORTED 58

